SAFARI 2000 Modeled Tropospheric Air Mass Trajectories, Dry Season 2000

Abstract

The ETA Forecast Trajectory Model was used to produce forecasts of air-parcel trajectories twice a day at three pressure levels over seven sites in Southern Africa for the period August 14, 2000 to September 23, 2000. These sites are Durban, Middleburg, Pietersburg, and Springbok, South Africa; Maun, Botswana; Mongu, Zambia; and Windhoek, Namibia.

The twice daily three-dimensional wind field (at 0000 and 1200 UTC) was used as input to the trajectory model. By integrating the vertical motion of the air parcels over a period of time, the trajectory model was able to forecast the net vertical displacement of air parcels during 12-hour periods.

The resulting trajectory plots represent the three-dimensional transport of air in time and can be used to examine what is happening in the low-to-mid troposphere during flight and ground-based observations. These levels are most significant in terms of the thermodynamic structure of the troposphere, especially the stable layers and accumulation of material between and below them, as well containing the major levels of subsidence over the subcontinent. The trajectory model output and thermodynamic profiles of the troposphere were used to position aircraft for sampling trace gases, aerosols and other species during the SAFARI 2000 field campaign and to predict regions of high aerosol and trace gas concentrations downwind.

The model output data are daily forward and backward trajectory plots at 850 hPa, 700 hPa, and 500 hPa pressure levels for each location. The plots are provided as JPEG images with coordinate, date, and time stamps.

Background Information

Investigators: Tal Freiman (tal@crg.bpb.wits.ac.za)

Project: SAFARI 2000

Data Set Title: SAFARI 2000 Modeled Tropospheric Air Mass Trajectories, Dry Season 2000

Site: Southern Africa Westernmost Longitude: 17.1 E Easternmost Longitude: 31.0 E Northernmost Latitude: -15.3 S Southernmost Latitude: -30.0 S

Data Set Citation:

Freiman, T. 2005. SAFARI 2000 Modeled Tropospheric Air Mass Trajectories, Dry Season 2000. Data set. Available on-line [http://daac. ornl.gov/] from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, U.S.A.

Data File Information:

The model output is stored as JPEG images, one file per plot, pressure level, and date, with a header displaying pressure level, coordinates, date, and time stamp on the top of each plot. The file naming convention is **OUTx_nnn_yymmdd12_Loc#_xrrr.jpg**,

where: **OUTx** indicates whether the **out**put is a forward (**x**=**f**) or backward (**x**=**b**) trajectory,

nnn is the pressure level (i.e., 850 hPa, 700 hPa, or 500 hPa),

yy are the last two digits of the year of data collection,

mm and dd are the month and day of data collection,

Loc# indicates the location of data collection (see table below), and

xrrr is a file identifier code where **x** indicates whether the output is a forward (**x**=**f**) or backward (**x**=**b**) trajectory and **rrr** is an alphanumeric.

Data File Organization:

The JPEG images are organized and available for downloading by both date and location.

- Date: All of the images for a given date for available locations have been aggregated and compressed.
- Location: All of the images for a given site (see table below) for available dates have been aggregated and compressed.

Other Companion Files:

- A template of each site illustrates how to read the plots. The templates are JPEG images, one for each site identified by name.
- A composite map of the spatial coverage of all the sites used, is provided in JPEG format (see figure below).
- A synoptic analysis of daily meteorological conditions at midday at the three pressure levels for three latitudinal zones (10 to 20 degrees South; 20 to 30 degrees South; and 30 degrees South and southwards) is provided as a companion .csv file (see table below this document.

Details regarding the plots:

The following sites were used to run forward and backward trajectories:

Sites	Country	Coordinates	Plot Number	Location Number
Pietersburg	South Africa	29.5 E, -23.9 S	Plot 1	Loc 1
Mongu	Zambia	23.2 E, -15.3 S	Plot 2	Loc 2
Maun	Botswana	23.4 E, -20.0 S	Plot 3	Loc 3
Windhoek	Namibia	17.1 E, -22.6 S	Plot 4	Loc 4
Springbok	South Africa	17.8 E, -29.7 S	Plot 5	Loc 5
Middleburg	South Africa	29.3 E, -25.8 S	Plot 8	Loc 8
Durban	South Africa	31.0 E, -30.0 S	Plot 9	Loc 9

A composite map of the spatial coverage of all the sites:

ETA Forecast Trajectory Model:

The National Centers for Environmental Prediction's (NCEP) step-mountain eta coordinate model, generally known as the ETA Model, provided the forward and backward input files required for the forward and backward trajectory modelling for the SAFARI 2000 campaign. The model uses: modified Betts-Miller convection schemes, the Mellor-Yamada turbulence closure model, the Cloud water model, and the Four-layer soil model.

Boundary conditions are accounted by the NCEP global spectral model by either gridded, p-level from GTS or spectral coefficient, o-level from the inhouse GSM. Many data types are ingested by the NCEP preprocessor to assimilate initial conditions. Such data are introduced into the model, on an intermittent basis, through a 3-hourly cycle data assimilation process 12 hours prior to the model starting time.

The model output domain can be centered on any area of interest, in this case, the sites listed above. The model provides decode u, v, w and psfc, and forward and backward inputs for trajectory modelling. The NCEP model outputs allow trajectory modelling to be done interactively or in batch mode.

For this data set, the ETA Forecast Trajectory Model was used to produce forecasts of air-parcel trajectories over seven sites in Southern Africa. The model was also was used by the South African Weather Bureau/Service (SAWS) to produce the basic meteorological data for the SAFARI project [South African Weather Service (SAWS), 2004].

Additional details about the ETA Forecast Trajectory Model used to produce this data set:

- 1. The ETA Forecast Trajectory Model was run for the period August 14, 2000 to September 23, 2000.
- 2. Data are available twice daily (0000 and 1200) (UTC).
- 3. Advection was 3-hourly.
- 4. The grid resolution is 0.5 degrees.
- 5. A five point array was used around each site of resolution 2.5 degrees.
- 6. A 48-hour trajectory was run forward (f) and backward (b) from the initial site.

Additional Sources of Information

SAFARI 2000 SYNOPTIC ANALYSIS AUGUST - SEPTEMBER 2000 (middday)

KEY: CH=continental high EW=easterly wave

WW=westerly wave ST=surface trough

RH=ridging high UT=upper trough

	30 deg South and southwards		20 to 30 deg South			10 to 20 deg South			
DATES	SURFACE	700 hPa	500 hPa	SURFACE	700 hPa	500 hPa	SURFACE	700 hPa	500 hPa
13-Aug	RH	RH	RH	СН	СН	СН	EW	СН	СН
14-Aug	СН	СН	СН	СН	СН	СН	EW	EW	EW
15-Aug	WW	WW	СН	СН	СН	СН	EW	EW	СН
16-Aug	СН	WW	WW	СН	СН	СН	EW	EW	EW
17-Aug	RH	WW	WW	СН	СН	ww	EW	EW	EW
18-Aug	RH	WW	WW	ST	СН	ww	EW	EW	EW
19-Aug	WW	WW	WW	ST	СН	ww	EW	СН	EW
20-Aug	WW	WW	WW	ST	СН	ww	EW	СН	EW
21-Aug	WW	WW	WW	WW	СН	ww	EW	СН	EW
22-Aug	RH	WW	WW	RH	WW	ww	EL	EW	EW
23-Aug	RH	WW	WW	ST	СН	ww	EL	СН	EW
24-Aug	RH	WW	WW	ST	СН	СН	EL	EW	EW
25-Aug	RH	WW	WW	СН	СН	СН	EL	EW	EW
26-Aug	ww	WW	WW	СН	СН	СН	EW	EW	EW
27-Aug	RH	WW	WW	СН	СН	СН	EL	EW	EW
28-Aug	RH	WW	WW	СН	СН	СН	EW	EW	EW
29-Aug	ww	WW	WW	СН	СН	СН	EW	EW	EW
30-Aug	RH	WW	WW	СН	СН	ww	EW	EW	EW
31-Aug	WW	WW	WW	WW	ww	ww	EW	EW	EW
01-Sep	ww	WW	WW	EL	WW	ww	EL	СН	СН
02-Sep	ww	WW	WW	СН	WW	ww	EL	СН	СН
03-Sep	WW	WW	WW	WW	ww	ww	EL	СН	СН
04-Sep	RH	WW	WW	EL	ww	ww	EL	СН	СН
05-Sep	RH	WW	WW	RH	СН	WW	EL	СН	СН
06-Sep	RH	WW	WW	ww	СН	ww	EL	СН	СН
07-Sep	WW	WW	WW	СН	СН	ww	EL	СН	СН
08-Sep	WW	WW	WW	СН	СН	WW	EW	СН	СН

09-Sep	ww	WW	WW	СН	ww	ww	EL	СН	СН
10-Sep	WW	WW	WW	WW	WW	WW	EL	СН	СН
11-Sep	ww	WW	WW	СН	WW	ww	EW	СН	СН
12-Sep	ww	WW	WW	СН	WW	ww	EW	СН	СН
13-Sep	WW	WW	WW	WW	СН	WW	EW	СН	СН
14-Sep	RH	RH	RH	RH	СН	СН	EL	СН	СН
15-Sep	RH	WW	WW	WW	WW	СН	EL	СН	СН
16-Sep	ww	WW	WW	WW	СН	ww	EL	СН	СН
17-Sep	RH	WW	WW	WW	WW	ww	EL	СН	WW
18-Sep	RH	RH	WW	RH	WW	WW	EW	СН	EW
19-Sep	RH	RH	WW	WW	СН	ww	EW	СН	СН
20-Sep	RH	UT	WW	RH	WW-UT	WW-UT	EW	СН	СН
21-Sep	RH	UT	WW	RH	WW-UT	ww	EW	СН	СН
22-Sep	СН	WW	WW	СН	СН	СН	EW	СН	СН
23-Sep	WW	WW	WW	СН	СН	СН	EL	СН	СН

Note: Any representation of the plots must acknowledge the following individuals and institutions:

Tal Freiman - Climatology Research Group, University of the Witwatersrand, Johannesburg, South Africa Hilarie Riphagen - South African Weather Service, Pretoria, South Africa

For use of any of the plots for publication purposes, please contact the Climatology Research Group.

References

Freiman, M. T., M. R. Jury, and S. Medcalf. 2002. The state of the atmosphere over South Africa during the Southern African Regional Science Initiative (SAFARI 2000). South African Journal of Science, 98: 91-98.

Freiman, M. T. and R. Riphagen. 2002. Southern African tropospheric air transport during SAFARI 2000. Journal of Geophysical Research, SAFARI 2000 Special Issue, submitted.

Jury, M. R. and Freiman, M. T. 2002. The climate of tropical Southern Africa during the SAFARI 2000 campaign. South African Journal of Science, 98: 527-540.

South African Weather Service (SAWS). 2004. SAFARI 2000 ETA Atmospheric Model Data, Wet and Dry Seasons 2000. Data set. Available on-line [http://daac.ornl.gov] from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, U.S. A.

Point of contact:

Tal Freiman Climatology Research Group, University of the Witwatersrand Johannesburg, South Africa Private Bag 3, WITS 2050 Email: tal@crg.bpb.wits.ac.za Phone: +27 11 7176534 Fax: +27 11 7176535

Revision Date: Thursday, March 10, 2005