Companion Documentation for the South African Weather Bureau JRA & JRB Aircraft Dry Season 2000 Intensive Campaign during SAFARI 2000

Data Sets:

SAFARI 2000 JRA Aerocommander Trace Gas, Aerosol and CCN Data, Dry Season 2000

SAFARI 2000 JRB Aerocommander Trace Gas and Aerosol Data, Dry Season 2000

Abstract

During the dry-season 2000 intensive campaign of SAFARI-2000 in August and September 2000, data were collected from a pair of South African Weather Bureau aircraft (JRA and JRB) during a total of 57 flights. Flights were conducted throughout the eastern half of southern Africa, and were designed to characterize aerosols and trace gases in the boundary layer. In particular, sources of pollutants were identified, and the effect of meteorological conditions and transport of aerosol particles and trace gases was investigated. Both aircraft flew out of Pietersburg (South Africa) for the duration of the campaign, although the operation was temporarily relocated to Kasane (Botswana), Lusaka (Zambia) and Vilancolus (Mozambique).

The JRA Aerocommander in Pietersburg, South Africa

The aircraft were equipped with a similar suite of instruments that measured state parameters, aerosol concentrations and size distributions, cloud droplet spectra and trace gases. In addition to optical probes and trace gas analyzers, a cloud condensation nucleus (CCN) counter was mounted on board JRA, and CCN activity spectra were measured on a variety of different air mass types (biomass burning, industrial, maritime). An airborne streaker sampler was used to collect aerosol samples. Twenty-four flights were conducted with the CCN counter aboard. From 11 September onwards, the US Forestry Service used JRA for measurements associated with fires; a total of 16 flights were conducted, ending on 24 September.

In addition to measuring aerosol and trace gas properties, JRB conducted flights between the surface and 28,000 ft asl to validate carbon monoxide concentrations detected by MOPITT. Air samples were collected at regular intervals by the NOAA investigators. Volatile organic compound (VOC) canisters were used to collect VOCs present over various land surface types.

The data described here include all data collected on the aircrafts' Data Acquisition System. This is **Version 3 (October 2002)** of the data as described on the Aerocommanders Data Page of SAFARI 2000 [<u>http://metsys.weathersa.co.za/safari2000/index.html</u>]. Data collected using other systems can be obtained from the responsible Investigators directly. Their contact information is included below or available on the Aerocommanders Data Page of SAFARI 2000.

Background Information

Investigators:

Stuart J. Piketh (stuart@crg.bpb.wits.ac.za) Robert J. Swap (rjs8g@virginia.edu) Kristy E. Ross (kristy@crg.bpb.wits.ac.za) Harold Annegarn (annegarn@schonlan.wits.ac.za) Roelof P. Burger (roelof@metsys.weathersa.co.za) Roelof T. Bruintjes (roelof@ucar.edu) Deborah C. Stein (dcs5v@virginia.edu) Thierry Elias (telias@uevora.pt) Paul Novelli (pnovelli@cmdl.noaa.gov) Brad Gore Bruce Doddridge (bruce@metosrv2.umd.edu) Ronald Sussot (rsusott@fs.fed.us)

Project: SAFARI 2000

Data Set Title: SAFARI 2000 JRA AEROCOMMANDER TRACE GAS, AEROSOL AND CCN DATA, DRY SEASON 2000

Site: Southern Africa

- Westernmost Longitude: 15.88378
- Easternmost Longitude: 36.91508

- Northernmost Latitude: -15.3247
- Southernmost Latitude: -28.7782

Data Set Title: SAFARI 2000 JRB AEROCOMMANDER TRACE GAS AND AEROSOL DATA, DRY SEASON 2000

Cite this data set as follows:

Piketh, S. J., T. Elias, and D. C. Stein. 2004. SAFARI 2000 JRB Aerocommander Trace Gas and Aerosol Data, Dry Season 2000. Data set. Available on-line [http://www.daac.ornl.gov] from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, USA.

Site: Southern Africa

- Westernmost Longitude: 22.15599
- Easternmost Longitude: 33.16346
- Northernmost Latitude: -17.8293
- Southernmost Latitude: -30.1916

Data File Information

The data files contain trace gas and aerosol property measurements collected from the the JRA and JRB aircraft. The files are organized and named by aircraft, date, and daily flight number. For example, data file b20000815_1.dat contains data collected on the first flight of the JRB aircraft on August 15, 2000. The data are stored as ASCII files in comma-separated-value format.

The reported values are ten second averages. All parameters were originally recorded on the aircraft Data Acquisition System with a temporal resolution of 1 Hz (i.e., Data acquisition mode -> 0 = 1Hz). No measures of uncertainty are provided (e.g., standard deviation). The average speed of the aircraft during data collection was 100 m s⁻¹. Data have been processed and corrected.

The data described here include all data collected on the aircraft Data Acquisition System. Data collected using other systems can be obtained from the responsible Investigators directly. For example, trace gas data collected on JRB using University of Maryland (UMD)

instrumentation should been obtained from Bruce Dodderidge directly (bruce@metosrv2.umd.edu).

Data file column headings, units, missing value codes, and variable descriptions.

VARIABLE	UNITS	MISSING DATA	LONGNAME	
DATE	UTC	-999	Study date (dd-mm-yyyy)	
TIME	UTC	-999	Study time (hh:mm:ss)	
mode	none	-999	Data acquisition mode $\rightarrow 0 = 1$ Hz and $1 \Rightarrow 10$ Hz	
GLAT	deg_east	-999	GPS latitude (decimal degrees)	
GLON	deg_west	-999	GPS longitude (decimal degrees)	
GDATE	UTC	-999	GPS date (ddmmyy)	
GTIME	UTC	-999	GPS time (hhmmss)	
GSPD	m/s	-999	GPS ground speed	
GHEAD	deg	-999	GPS heading	
GSTAT	none	-999	GPS status	
ATBR	degC	-999	Ambient Temperature	
RHUM	%	-999	Vaisala humidity	
PSBC	hPa	-999	Corrected Static Pressure	
TAS	m/s	-999	Derived True Air Speed	
ATBF	degC	-999	Ambient Temperature	
TAS1	m/s	-999	Derived True Air Speed	
GALT	m	-999	NACA Pressure Altitude	
ALTF	feet	-999	NACA Pressure Altitude	
THETA	K	-999	Potential Temperature	
THETAE	K	-999	Equivalent Potential Temperature	
THETAV	K	-999	Virtual Potential Temperature	
SPHUM	g/kg	-999	Specific Humidity	
MR	g/cm^3	-999	Mixing Ratio	
RHO	g/cm^3)	-999	Absolute humidity (Vapour Density)	
TDEW	degC	-999	Dewpoint Temperature	
TVIR	K	-999	Virtual Temperature	

PRNG_LWO	none	-999	PCASP-100X range	
DBARP_LWO	uM	-999	PCAS-100 mean particle diameter	
DISPP_LWO	none	-999	PCAS-100 dispersion (sigma/dbarx)	
CONCP_LWO	#/cm^3	-999	PCAS-100 total concentration	
CPCAS_LWO_(1-15)	#/cm^3/uM_ival	-999	PCAS-100 corrected concentration	
FRNG_LWI	none	-999	FSSP-100 range	
CONCF_LWI	#/cm^3	-999	FSSP-100 total concentration	
DBARF_LWI	uM	-999	FSSP-100 mean particle diameter	
DISPF_LWI	none	-999	FSSP-100 dispersion (sigma/dbarx)	
LWCF_LWI	g/cm^3	-999	FSSP-100 Liquid Water Content	
CFSSP_LWI_(1-15)	#/cm^3/uM_ival	-999	FSSP-100 corrected concentration	
SO2	PPB	-999	S02 Concentration	
O3	PPB	-999	O3	
СО	PPB	-999	CO_signal	
NO	PPB	-999	NO_signal	
SO2C	PPB	-999	SO2 Concentration transformed to atmosphere at 25 Deg C	
O3C	PPB	-999	O3 Concentration transformed to 1 atmosphere at 25 Deg C	
сос	PPB	-999	CO Concentration transformed to 1 atmosphere at 25 Deg C	
NOC	PPB	-999	NO Concentration transformed to 1 atmosphere at 25 Deg C	

The variable 'CPCAS_LWO' has 15 particle concentration values corresponding to a size bin. This PCASP instrument operated in only one range.

Lower and upper particle site limits (micrometers) for 'CPCAS_LWO' size bins.

Size Bin	Lower Limit (um)	Upper Limit (um)
1	0.10	0.12
2	0.12	0.14
3	0.14	0.17
4	0.17	0.20
5	0.20	0.25
6	0.25	0.30

7	0.30	0.40
8	0.40	0.50
9	0.50	0.70
10	0.70	0.90
11	0.90	1.20
12	1.20	1.50
13	1.50	2.00
14	2.00	2.50
15	2.50	3.00

The variable 'CFSSP_LWI' has 15 values corresponding to a size bin. The different instrument operating range values of 'FRNG_LWI' will determine the bin size

limits.

Lower and upper particle site limits (micrometers) for 'CFSSP_LWI' size bins for instrument operating ranges.

	Ran	ge 0	Ran	ge 1	Ran	ge 2	Ran	ge 3
Sizo	Lower	Upper	Lower	Upper	Lower	Upper	Lower	Upper
Bin	Limit							
DIII	(um)							
1	2.00	5.00	2.00	4.00	1.00	2.00	0.50	1.00
2	5.00	8.00	4.00	6.00	2.00	3.00	1.00	1.50
3	8.00	11.00	6.00	8.00	3.00	4.00	1.50	2.00
4	11.00	14.00	8.00	10.00	4.00	5.00	2.00	2.50
5	14.00	17.00	10.00	12.00	5.00	6.00	2.50	3.00
6	17.00	20.00	12.00	14.00	6.00	7.00	3.00	3.50
7	20.00	23.00	14.00	16.00	7.00	8.00	3.50	4.00
8	23.00	26.00	16.00	18.00	8.00	9.00	4.00	4.50
9	26.00	29.00	18.00	20.00	9.00	10.00	4.50	5.00
10	29.00	32.00	20.00	22.00	10.00	11.00	5.00	5.50
11	32.00	35.00	22.00	24.00	11.00	12.00	5.50	6.00
12	35.00	38.00	24.00	26.00	12.00	13.00	6.00	6.50
13	38.00	41.00	26.00	28.00	13.00	14.00	6.50	7.00
14	41.00	44.00	28.00	30.00	14.00	15.00	7.00	7.50
15	44.00	47.00	30.00	32.00	15.00	16.00	7.50	8.00

Example Data Records

Example data file (b20000815_1.dat).

DATE,TIME,mode,GLAT,GLON,GDATE,GTIME,GSPD,GHEAD,GSTAT,ATBR,RHUM, PSBC,TAS,ATBF,TAS1,GALT,ALTF,THETA,THETAE,THETAV,SPHUM,MR,RHO, TDEW,TVIR,PRNG_LWO,DBARP_LWO,DISPP_LWO,CONCP_LWO,CPCAS_LWO_1, CPCAS_LWO_2,CPCAS_LWO_3,CPCAS_LWO_4,CPCAS_LWO_5,CPCAS_LWO_6, CPCAS_LWO_7,CPCAS_LWO_8,CPCAS_LWO_9,CPCAS_LWO_10,CPCAS_LWO_11, CPCAS_LWO_12,CPCAS_LWO_13,CPCAS_LWO_14,CPCAS_LWO_15,FRNG_LWI, CONCF_LWI,DBARF_LWI,DISPF_LWI,LWCF_LWI,CFSSP_LWI_1,CFSSP_LWI_2, CFSSP_LWI_3,CFSSP_LWI_4,CFSSP_LWI_5,CFSSP_LWI_6,CFSSP_LWI_7, CFSSP_LWI_8,CFSSP_LWI_9,CFSSP_LWI_10,CFSSP_LWI_11,CFSSP_LWI_12, CFSSP_LWI_13,CFSSP_LWI_14,CFSSP_LWI_15,SO2,O3,CO,NO,SO2C,O3C, COC,NOC

 $15-08-2000,07:28:11,0,-23.861,29.457,150800,72811,0.000,318.000,1,20.593,36.373,\\902.227,7.113,20.525,7.112,968.188,3176.469,302.514,0.018,303.629,0.006,0.006,\\6.504,5.227,294.836,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,1.000,0.000,0.000,0.000,\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,\\0.000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,0$

 $15-08-2000,07:28:21,0,-23.861,29.457,150800,72821,0.000,318.000,1,20.621,36.536,\\902.386,6.807,20.432,6.804,966.738,3171.712,302.528,0.018,303.650,0.006,0.006,\\6.544,5.315,294.871,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,1.000,0.000,0.000,0.000,\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,\\0.000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000$

Aerocommander Instrumentation

Parameter	Instrument	Manufacturer	Supplier	Investigator
State parameters			SAWB/METSYS	Roelof Burger
Accumulation mode aerosols	PCASP-100x	PMS	NCAR	Roelof Bruintjes

Instruments mounted on board JRA

Condensation nuclei	CNC - model 3760/3762	TSI	NCAR	Roelof Bruintjes
Cloud condensation nuclei	CCN counter-100A	University of Wyoming	NCAR	Roelof Bruintjes
Cloud droplets	SPP-100	PMS	NCAR	Roelof Bruintjes
Cloud droplets	FSSP-100	PMS	SAWB/METSYS	Roelof Burger
Cloud droplets	2DC	PMS	SAWB/METSYS	Roelof Burger
Precipitation particles	2DP	PMS	SAWB/METSYS	Roelof Burger
Ozone	O ₃ analyser-49C	TEI	Wits	Stuart Piketh
Carbon monoxide	CO analyser-48S	TEI	Wits	Stuart Piketh
Sulphur dioxide	SO ₂ analyser-43C	ТЕКО	Wits/DEAT	Stuart Piketh
Aerosol samples	ABS-1	Wits/Max Planck	Wits	Stuart Piketh
Scattering	Nephelometer		ESKOM TSI	Neil Snow

Instruments mounted on board JRB

Parameter	Instrument	Manufacturer	Supplier	Investigator
State parameters			SAWB/METSYS	Roelof Burger
Aerosols	PCASP-100x	PMS	Wits	Stuart Piketh
Condensation nuclei	CN counter model 3010	TSI	Wits	Stuart Piketh
Cloud droplets	FSSP-100	PMS	SAWB/METSYS	Roelof Burger
Cloud droplets	2DC	PMS	SAWB/METSYS	Roelof Burger
Precipitation particles	2DP	PMS	SAWB/METSYS	Roelof Burger
Ozone	O ₃ analyser-49C	TEI	UMD	Deborah Stein
Nitrogen oxides	NOx analyser-42C	TEI	UMD	Deborah Stein
Carbon monoxide	CO analyser-48S	TEI	UVA	Deborah Stein

Sulphur dioxide	SO ₂ analyser	TEI	ESKOM TSI	Neil Snow
Scattering	Nephelometer-3563	TSI	CGE	Thierry Elias
Carbon monoxide	Trace canisters		NOAA	Paul Novelli
Volatile organic canisters	VOC canisters		UVA/Wits	Stuart Piketh

Aerocommander Instrumentation Table Acronyms:

Acronym	Definition
CGE	Centro de Geofísica de Évora (Geophysics Centre of Évora) [http://www.cge.uevora.pt] University of Évora, Portugal [http://www.uevora.pt]
DEAT	South African Department of Environmental Affairs and Tourism
ESKOM	Eskom Group [<u>http://www.mbendi.com/eskomenterprises/about/eskom.htm</u>]
METSYS	SAWS Meteorological Systems and Technology
NCAR	National Center for Atmospheric Research
NOAA	National Oceanic and Atmospheric Administration
SAWB	South African Weather Bureau
SAWS	South African Weather Service
UMD	University of Maryland
UVA	University of Virginia
WITS	University of the Witwatersrand

Aircraft Operations

The two aircraft were operated for the most part in a coordinated fashion. The aim of coordinated flights was to sample air at different positions within the same atmospheric transport mechanism. The basis for positioning the airborne resources within the region was made by subdividing the atmospheric circulation into six sectors, centered around the micrometeorological flux tower in Maun, Botswana (19.93° S, 23.59° E) (**Figure 1**). The research aircraft deployment plan was to take multiple observations in each of the sectors for different circulation patterns. The aim of measuring aerosol and trace gas characteristics simultaneously at different locations was to create a regional model of the evolution,

maturation and decay of the southern African atmospheric circulation system. Missions were designed according to synoptic meteorology (Poolman, 2004), atmospheric haze conditions, satellite overpasses, and ground based validation targets. Some flights were designed to provide the maximum synchronous under flight time with the ER-2 remote sensing aircraft and the Terra satellite. The aircraft flights were also coordinated with the remote sensing platforms. After under flying Terra, research aircraft would move on to other targets of interest (Swap et al., 2002).

JRA and JRB Flight Tracks

The flight tracks for JRA for the Dry Season 2000 SAFARI 2000 campaign for both JRA and JRB are given in **Figures 2 and 3**. The spatial coverage over the subcontinent obtained by JRA was better than JRB. Flights were conducted using JRA for an additional two weeks after 14 September 2000.

The data sets have been divided into 2.5x2.5 degree grids over the southern African region. Average values have been calculated between the surface and 3000 m above seal level (asl). This gives a first good estimate of the spatial distribution of the constituent being considered as well as the magnitude of the average concentrations within the boundary layer. An example of this is given for sulfur dioxide concentrations over southern Africa. The concentrations are recorded in the major industrial source regions (**Figure 4**).

The dates when the JRA and JRB were flying, and the number of flights each day.

JRA Flights			
Date	# of Flights		
2000-08-15	2		
2000-08-16	2		
2000-08-18	1		
2000-08-20	1		

JRA Flights (cont.)

orar i ingites (cont.)				
Date	# of Flights			
2000-09-13	2			
2000-09-14	2			
2000-09-17	2			
2000-09-18	2			

JRB Flights

U				
Date	# of Flights			
2000-08-15	2			
2000-08-16	2			
2000-08-20	2			
2000-08-22	2			

2000-08-24 2 2000-08-26 1 2000-08-27 1 2000-08-29 2 2000-09-01 3 2000-09-02 2 2000-09-05 1 2000-09-06 1 2000-09-07 2 2000-09-11 1 2000-09-12 1	2000-08-23	1	2000-09-22	2	2000-08-23	1
2000-08-26 1 2000-08-27 1 2000-08-29 2 2000-09-01 3 2000-09-02 2 2000-09-05 1 2000-09-06 1 2000-09-07 2 2000-09-11 1 2000-09-12 1	2000-08-24	2	2000-09-23	2	2000-08-24	3
2000-08-27 1 2000-08-29 2 2000-09-01 3 2000-09-02 2 2000-09-05 1 2000-09-06 1 2000-09-07 2 2000-09-11 1 2000-09-12 1	2000-08-26	1	2000-09-24	2	2000-08-25	2
2000-08-29 2 2000-09-01 3 2000-09-02 2 2000-09-03 1 2000-09-05 1 2000-09-06 1 2000-09-07 2 2000-09-11 1 2000-09-12 1	2000-08-27	1		<u>.</u>	2000-08-26	2
2000-09-01 3 2000-09-02 2 2000-09-05 1 2000-09-06 1 2000-09-07 2 2000-09-11 1 2000-09-12 1	2000-08-29	2			2000-08-27	2
2000-09-02 2 2000-09-05 1 2000-09-06 1 2000-09-07 2 2000-09-11 1 2000-09-12 1	2000-09-01	3			2000-08-29	3
2000-09-05 1 2000-09-06 1 2000-09-07 2 2000-09-11 1 2000-09-12 1	2000-09-02	2			2000-08-31	1
2000-09-06 1 2000-09-07 2 2000-09-11 1 2000-09-12 1	2000-09-05	1	-		2000-09-02	2
2000-09-07 2 2000-09-11 1 2000-09-12 1	2000-09-06	1			2000-09-03	2
2000-09-11 1 2000-09-06 1 2000-09-07 2	2000-09-07	2			2000-09-05	2
	2000-09-11	1			2000-09-06	1
2000-09-12 1 2000-09-07 2	2000-09-12	1			2000-09-07	2

JRA/JRB Intercomparison

On 23 August 2000, an intercomparison was conducted between the measurements collected from JRA and JRB. The aircraft flew alongside each other for about 1 hour. Results of the intercomparison are shown below. In all cases, the measured parameters compare favorably.

30 <u>58</u>

Figure 6. JRA/JRB intercomparison of dewpoint temperature measurements.

Additional Sources of Information

References

Terblanche, D.E., M.P. Mittermaier, S.J. Piketh, R.T. Bruintjes and R.P Burger, The Aerosol Recirculation and Rainfall Experiment - ARREX: An initial study on aerosol-cloud interactions over South Africa, South African Journal of Science, 96, 15-21, 2000.

Point of Contact:

Stuart Piketh Climatology Research Group University of the Witwatersrand Johannesburg Private Bag 3 WITS 2050 South Africa Tel: +27 11 717-6533 Fax: +27 11 717-6535 E-mail: stuart@crg.bpb.wits.ac.za

Additional References:

Annegarn, H.J., Otter, L., Swap, R.J., Scholes, R.J. (2002) Southern Africa's ecosystem in a test tube: A perspective on the Southern African Regional Science Initiative, South African Journal of Science, 98, 111-113.

Poolman, E. 2004. SAFARI 2000 ETA Atmospheric Model Data, Wet and Dry Seasons 2000. Data set. Available on-line [http://www.daac.ornl.gov] from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, U.S.A.

Stein, D. C., R. J. Swap, S. Greco, S. J. Piketh, S. A. Macko, B. G. Doddridge, T. Elias, and R. T. Bruintjes, Haze layer characterization and associated meteorological controls along the eastern coastal region of southern Africa, J. Geophys. Res., 108(D13), 8506, doi:10.1029/2002JD003237, 2003

Swap, R.J., Annegarn, H.J., Otter, L.B. (2002) Southern African Regional Science Initiative (SAFARI 2000): Condensed Science Plan, South African Journal of Science, 98, 119-124.

Swap, R.J., Annegarn, H.J., Suttles, J.T., Haywood, J., Helmlinger, M., Hely, C., Hobbs, P.V., Holben, B.N., Ji, J., King, M., Landmann, T., Maenhaut, W., Otter, L., Pak, B., Piketh, S.J., Platnick, S., Privette, J., Roy, D., Thompson, A.M., Ward, D., Yokelson, R. (2002) The Southern African Regional Science Initiative (SAFARI 2000): Dry-Season Field Campaign: An Overview, South African Journal of Science, 98, 125-130.