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Introduction 

 

The Community Land Model (CLM) requires time series of several meteorological variables as 

input.  These variables include temperature, precipitation, vapor pressure deficit, incoming short-

wave radiation, and wind speed. The desired temporal resolution of these variables is 3-hourly. 

 

The CLM was driven with observation-based and simulated gridded meteorological data at 1/24 

degree. The source for observational data was METDATA and the source for the simulated data 

was MACAv2-METDATA, or “MACA” for short hereon.  Both METDATA and MACA are at 

a daily resolution, so the daily data were disaggregated to a 3-hourly resolution using the 

methodology described in this companion file (taken from the SI Appendix to the publication 

Buotte et al,  ).     

 

Methodology for downscaling and bias correcting CRUNCEP climate data used to drive 

the Community Land Model 

 

Data sources: 

1. CRUNCEP ½ degree climate data (Mitchell & Jones, 2005) 

2. Observation-based 4km climate data (Abatzoglou, 2013), referred to as METDATA 

 

Methods: 

1. Downscale the ½-degree CRUNCEP data (1901-2010) to our 1/24 degree grid using nearest 

neighbor 

2. Temporally and spatially bias-correct the CRUNCEP to the Abatzoglou METDATA  

3. Define the base climatological period (BCP; period of overlap between CRUNCEP and 

METDATA), 1979-2010. 

4. Temperature 

 

4.1 Calculate mean monthly values during climatological base period.   

  

TG(month,BCP) = mean CRUNCEP temperature in a given month (January, 

February, …, December) over all years in base climatological period in a given 

pixel (12 values per pixel); averages are computed by summing all 6-hourly 

values within that month in those years, and dividing by N = 4 time steps per day 

* number of days in the month * 32 years. 
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TM(month,BCP) = mean METDATA temperature in a given month during the 

base climatology period for a given pixel (12 values per pixel); averages are 

computed summing all 3-hourly values within that month in those years, and 

dividing by N = 8 time steps per day * number of days in the month * 32 years. 

 

4.2 Calculate the difference to be applied to CRUNCEP.  This results in a mean 

difference between the two climatologies for each month (12 values per pixel). 

 

T(month) = TM(month,BCP) - TG(month,BCP) 

 

4.3 Bias correct the GSWP during 1901-1978 (TG(6-hour,month,year)), where 6-hour is 

the 6-hourly timestep within the month).  TGbc(6-hour,month,year) is the bias-corrected 

temperature. 

 

TGbc(6-hour,month,year) = TG(6-hour,month,year) + T(month) 

 

Five Variables with lower bound at 0 (precipitation, radiation, humidity, wind speed, pressure) 

 

5.1 Calculate average monthly values during climatological base period, precipitation rate 

used as the example 

  

PG(month,BCP) = average CRUNCEP precipitation rate (mm/s) in a given month 

(January, February, …, December) over all years in base climatological period in 

a given pixel (12 values per pixel); sums are computed using all 6-hourly values 

within that month in those years, divided by N = 4 timesteps perday * number of 

days in month * 32 years 

 

PM(month,BCP) = data from David = average METDATA precipitation rate 

(mm/s) in a given month during the base climatology period for a given pixel (12 

values per pixel); sums are computed using all daily values within that month in 

those years (ensure METDATA units are same as CRUNCEP for all other 

variables), divided by N = 8 time steps per day * number of days in the month * 

32 years  

 

5.2 Calculate a ratio to be applied to CRUNCEP.  This results in a scale factor between 

the two climatologies for each month (12 values per pixel). 

 

Pscale_factor(month) = PG(month,BCP) / PM(month,BCP) 

 

5.3 Ensure there are no extreme ratios 

 

Inspect the distribution of pixel values for each monthly ratio, further inspect any 

outliers. 
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5.4 Bias correct the GSWP during 1901-1978 (PG(6-hour,month,year)), where 6-hour is 

the 6-hourly timestep within the month).  PGbc(6-hour,month,year) is the bias-corrected 

precipitation. 

 

PGbc(6-hour,month,year) = PG(6-hour,month,year) * Pscale_factor(month) 

 

5.5 Bias correct the other 0-bounded variables analogously. 

 

 

Data sources 

 

i. Observation-based gridded meteorological data (previously called METDATA, now called 

GRIDMET), daily, 1/24-degree resolution ((Abatzoglou, 2013).  Last accessed 2016-01-29.  

http://www.climatologylab.org/gridmet.html. 

 

ii. North America Regional Reanalysis (NARR), three-hourly, 0.3-degree resolution (Mesinger et 

al., 2006).  Accessed 2013-09-18 (data through 2012) and 2016-03-21 (data from 2013 through 

2015).  https://www.esrl.noaa.gov/psd/data/gridded/data.narr.html. 

 

iii. Statistically downscaled global climate model simulations using the method of Multivariate 

Adaptive Constructed Analogs v.2 with METDATA as the training data (MACAv2-

METDATA), daily, 1/24-degree resolution.  Last accessed 2014-11-09.  

https://climate.northwestknowledge.net/MACA/. 

 

iv. Global climate model (GCM) output from the Coupled Model Intercomparison Project Phase 

5 (CMIP5) archive, three-hourly, various spatial resolutions (Taylor et al., 2012).  Our study uses 

output from IPSL-CM5A-MR r1i1p1 and MIROC5 r1i1p1, historical and rcp85 experiments. 

Accessed 2011-11-05.  https://cmip.llnl.gov/cmip5/data_portal.html. 

 

Disaggregation of METDATA 

 

To disaggregate the daily METDATA to a 3-hourly resolution, we made use of the 3-hourly 

NARR data. To disaggregate the downscaled daily MACA to a 3-hourly resolution, we made use 

of the 3-hourly data from the “raw” (i.e. not downscaled) CMIP5 GCM simulations.    

 

Briefly, the method consists of ‘rescaling’ the 3-hourly GCM (or NARR) time series to be 

consistent with aggregate daily values, or maximum and minimum daily values, from MACA (or 

METDATA).  Note from hereon, we use the example of MACA 3-hour disaggregation, though 

the METDATA 3-hourly disaggregation follows the identical method, other than the GCM data 

are used with MACA whereas NARR is used with METDATA. 

 

This rescaling entails first converting the variables in the 3-hourly GCM datasets to 

dimensionless quantities by a standardization method (see 2.1 below-the particular method 

depends on the variable). Second, the downscaled daily data is disaggregated to 3-hourly by 

multiplying the daily data by the standardized quantities, in a sense ‘de-standardizing’ the data.  

http://www.climatologylab.org/gridmet.html
https://www.esrl.noaa.gov/psd/data/gridded/data.narr.html
https://climate.northwestknowledge.net/MACA/
https://cmip.llnl.gov/cmip5/data_portal.html


 4 

To apply the second step, each fine-grained cell in the downscaled dataset set must be mapped to 

its associated coarse-grained cell in the GCM dataset. 

 

The strength of this method is that it maintains the covariance structure of, and therefore the 

physical consistency between, all the variables. It also maintains consistency with the source 

GCM itself. This latter feature may also be a drawback if the GCM poorly represents variability 

of some variable, precipitation for example, at the 3-hourly timescale. A potential weakness of 

the method is that the standardized time series for a given day is identical across the GCM cell 

which are relatively large at ~1 to 2.5-degrees. This means that a storm, for example, would peak 

at exactly the same time everywhere within the GCM cell, though magnitude would vary across 

the cell.  This temporal uniformity at the GCM scale might be important if lateral fluxes between 

the CLM cells were an issue (for example, if we were simulating flood discharge in a river).  

However, in CLM the fluxes are only vertical, so for out purposes this drawback of the method is 

unimportant. (Note: this is less of an issue with the higher resolution NARR data.) 

 

2.1. Creating a standardized 3-hourly gridded dataset 

 

We first transform each variable in the 3-hourly GCM dataset so it becomes “standardized”.  To 

transform temperature T, we use the following standardization: 

 

 

Ti
* =
Ti − (Tmax +Tmin ) /2

Tmax −Tmin
 for  minmax TT    (1a) 

 

where the superscript ‘*’ indicates the standardized quantity, i indexes the 3-hour time step 

within a 24 hour day (1, 2, …, 8), and Tmax and Tmin are the maximum and minimum 

temperatures, respectively, on that day.  If Tmax = Tmin then we apply a simple sine function: 
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where tlocal is local time (0 to 24 hours).  Eq. (1b) sets the minimum and maximum temperatures 

to fall at 3:00 and 15:00 hours, local time, respectively. 

 

In the case of precipitation P, the precipitation total within a 3-hourly period is divided by the 

total precipitation on that day: 
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Specific humidity SH is standardized by the mean of SH over the day: 
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Downward short-wave radiation SW is standardized similarly: 

 

 

SW i

* =
SW i
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else 

 

1* =iSW        (4b) 

 

 

In the case of wind, anomalies of the zonal and meridional velocity components, U and V, 

respectively are generated as differences from the daily mean: 

 

 

UUU ii −=
~

       (5a) 

 

VVV ii −=
~

       (5b) 
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2.2. Disaggregating the downscaled daily dataset 

 

To disaggregate the daily data to 3-hourly, each fine-grained cell in the downscaled MACA 

dataset must be first be mapped to its ‘parent’ coarse-grained cell in the GCM. This mapping 

simply consists of assigning each cell in the downscaled grid the ‘address’ of its parent cell as a 

set of (j, k) indices. 

 

Once the address is known, the disaggregation consists of inverting the above standardization 

procedure, with the difference that the standardization parameters are now taken from the daily 
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MACA data instead of the GCM data. In the case of temperature, the standardization parameters 

are tmax and tmin from MACA data and the inversion is as follows: 
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where ti denote the fine-grained (downscaled) temperature at time step indexed by i as before. 

 

For precipitation, the parameter is the total precipitation ptot on the day in question: 

 

totii pPp *=        (8) 

 

For specific humidty, the standardized time series is multiplied by the mean specific humidity 

sh  on a given day: 

 

shSHsh ii

*=        (9) 

 

Short-wave radiation is calculated likewise from the mean short-wave radiation sw : 

 

swSWsw ii

*=        (10) 

 

For the wind vectors, we simply add the 3-hourly wind vector anomalies from the GCM to the 

daily downscaled mean wind components u  and v :   

 

ii Uuu
~

+=        (11a) 

 

ii Vvv
~

+=        (11b) 

 

This preserves the downscaled daily wind speed calculated using the mean wind components u  

and v .   

 

 

Methodology for generating harvest scenarios used in the Community Land Model to 

mimic historical, "business-as-usual" harvest rates 

 

Timber harvest was calibrated at the state level to reproduce historic harvest totals in each 

state (Berner et al., 2017), with grid cell selection respecting a 60-year rotation length.  Grid cells 

were considered for harvest only if they were not protected public lands and had soils with at 

least 120 mm available water holding capacity (Peterman et al., 2013), at least 300 trees per 

hectare and at least a 40-year fire return interval (Hudiburg et al., 2013). 
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