LPJ-WHy: Modeling peatlands and permafrost in a DGVM (Wania et al. 2009a, b)

Data model citation at ORNL DAAC:

Wania, R., I. Ross and I.C. Prentice. 2009. LPJ-WHy: Modeling peatlands and permafrost in a DGVM (Wania et al. 2009a, b). Model product. Available on-line [http://www.daac.ornl.gov] from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, U.S.A.

Modeling Manuscript Archive Entry for: Wania et al., 2009a and b.

Model release documentation for LPJ-WHy, Version 1.2.

Last updated:

16 October 2009

Scientific point of contact:

Rita Wania
School of Earth and Ocean Sciences
University of Victoria
PO Box 3065
Victoria, BC, V8W 3V6

Email: rita@wania.net Phone: (250) 721-6181

Published manuscript reference:

Wania, R., I. Ross, and I. C. Prentice (2009a), Integrating peatlands and permafrost into a dynamic global vegetation model: 1. Evaluation and sensitivity of physical land surface processes, *Global Biogeochemical Cycles*, 23, GB3014, doi:10.1029/2008GB003412.

Wania, R., I. Ross, and I. C. Prentice (2009b), Integrating peatlands and permafrost into a dynamic global vegetation model: 2. Evaluation and sensitivity of vegetation and carbon cycle processes, *Global Biogeochemical Cycles*, 23, GB3015, doi:10.1029/2008GB003413.

Target compute platform:

The model can be run on any platform.

Model build environment:

Fortran 77 and C++. The code can be compiled by using freely available compilers such as ifort, g77 and gcc.

Additional analysis environment requirements:

LPJ-WHy produces NetCDF files, which can be viewed and processed in any suitable environment. To analyse the data, we used the *CDO* and *NCO* tools and to view and plot the data we used data visualisation software such as *Ferret* or *NCL*, all of these are freely available software packages and are just listed as examples.

```
CDO: http://www.mad.zmaw.de/Pingo/post/post.cdo.home.html

NCO: http://nco.sourceforge.net/

Ferret: http://ferret.wrc.noaa.gov/Ferret/

NCL: http://www.ncl.ucar.edu/
```

Detailed instructions:

First, we provide a list of all the directories and files. The material is split up into five directories, utils, src, doc and data.

The utils directory

The utils directory contains auxiliary code for the use of the input/output driver (lpjio.cpp), which uses NetCDF files as input and output. Written by Ian Ross.

```
apply-base.cpp C++ auxiliary file.

Array.cpp C++ auxiliary file.

Array.hh C++ header file.

clamp-value.cpp C++ auxiliary file.

ncminmax.cpp C++ auxiliary file.

Eile to link and compile.
```

Makefile File to link and compile the above files.

The src directory

The main LPJ-WHyMe source code and driver file are located in this directory.

lpjmain.f	Main LPJ-WHy code (Fortran 77). Contains all subroutines and
rpjmarn.r	· · · · · · · · · · · · · · · · · · ·
	changes described in Wania et al. 2009a and b.
params.cb	Common block containing parameter values.
inputvars.cb	Common block containing definition of climate input variables.
soilvars.cb	Common block containing definition of soil relevant variables.
vegvars.cb	Common block containing definition of vegetation relevant vari-
	ables.
ch4vars.cb	Common block containing definition of methane relevant variables.
lpjio.cpp	C++ driver for LPJ-WHyMe, used to handle input and output files.
	(Written by Ian Ross.)
Makefile	File to link and compile the code.

The data directory

In the subdirectory global, we provide the land mask and soil type data on a $1^{\circ} \times 1^{\circ}$ resolution for the region 60° S to 90° N. The soil type map is based on the FAO data set, but is overlain by soil organic carbon data from the IGBP-DIS data set [Global Soil Data Task Group, 2000]. As climate input data, we used either a climatology or a time series data set provided by the Climate Research Unit (CRU) at the University of East Anglia, United Kingdom [New et al., 1999, Mitchell and Jones, 2005]. Here, we provide data only for one example grid cell as we cannot distribute the global data sets. The global data are on a $0.5^{\circ} \times 0.5^{\circ}$ resolution and can be downloaded at http://www.cru.uea.ac.uk/cru/data/hrg.htm.

The subdirectory examples of tin.dat	ample-site contains data from the Degerö site in Sweden. Plant functional type parameter file, read by lpjmain.f.
lpj.cfg	Configuration file giving names of input files and
-b1.0-8	output variables. Description of lpj.cfg file
	format and lpjio.cpp driver can be found in
	doc/USING-The-netCDF-Driver.txt.
lpj_land_mask.nc	Land/ocean mask.
lpj_soil_type.nc	,

tas.nc Monthly mean temperature (°C) from the CRU CL 1.0 climatology [New et al., 1999].

pr.nc Monthly mean precipitation (mm per month) from the CRU CL 1.0 climatology [New et al., 1999].

clt.nc Monthly mean cloud cover (%) from the CRU CL 1.0 climatology [New et al., 1999].

wetdays.nc Monthly mean wet days from the CRU CL 1.0 climatology [New et al., 1999].

Running LPJ-WHyMe

To run LPJ-WHyMe using the provided test data:

- 1. In the utils directory, ensure that all paths are set correctly in the Makefile. Then type make.
- 2. In the src directory, ensure that all paths are set correctly in the Makefile. Then type make.
- 3. Copy the pftin.dat and lpj.cfg files into the data directory. Run the lpj-whyme executable produced in step 2 in the data directory.
- 4. An output file called out_280-1001.nc will be produced in the data directory.

References

- Global Soil Data Task Group. Global gridded surfaces of selected soil characteristics (IGBP-DIS). Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, U.S.A., 2000. http://www.daac.ornl.gov.
- T. D. Mitchell and P. D. Jones. An improved method of constructing a database of monthly climate observations and associated high-resolution grids. *Int. J. Clima*tol., 25(6):693–712, May 2005.
- M. New, M. Hulme, and P. D. Jones. Representing twentieth century space-time climate variability. Part 1: Development of a 1961–1990 mean monthly terrestrial climatology. *J. Clim.*, 12:829–856, 1999.