.....

GLOBALVIEW-CH₄, 2001 Cooperative Atmospheric Data Integration Project

**** Documentation File ****
December 28, 2001

In order to use GLOBALVIEW-CH₄ as it was intended, users should read and understand this documentation file. It is also highly recommended that users consult the relevant published literature (a partial list is provided in Section 10 (REFERENCES)).

GLOBALVIEW-CH₄ is derived from measurements but contains no actual data. To facilitate use with carbon cycle modeling studies, the measurements have been processed (smoothed, interpolated, and extrapolated) resulting in extended records that are evenly incremented in time. Be aware that information contained in the actual data may be lost in this process. Users are encouraged to review the actual data in the literature, in data archives (CDIAC, WDCGG), or by contacting the participating laboratories identified below.

Smoothed, interpolated, and extrapolated values in the extended records are determined with varying degrees of confidence. We strongly encourage users to consider the relative weights assigned to these values when using this product.

GLOBALVIEW-CH₄ is subject to change as members of the Cooperative Atmospheric Data Integration Project reserve the right to adjust individual measurement records based on recalibrations of standard gases and instruments.

The GLOBALVIEW-CH₄ data product continues to evolve. Extended records and statistical summaries may change as techniques are refined and new data are added.

Comments regarding clarity and ease-of-use are encouraged. Please send comments to the email address provided in Section 8 (COMMENTS/QUESTIONS).

HOW TO CITE GLOBALVIEW-CH₄

Anyone using GLOBALVIEW-CH₄ is agreeing to acknowledge its authors. The list of cooperating scientists and their organizations and institutions is large and would be cumbersome to include as a reference, thus GLOBALVIEW-CH₄ and its contributors should be referenced as [GLOBALVIEW-CH₄, 2001], and in a list of references as

GLOBALVIEW-CH₄: Cooperative Atmospheric Data Integration Project - Methane. CD-ROM, NOAA CMDL, Boulder, Colorado [Also available on

Internet via anonymous FTP to ftp.cmdl.noaa.gov, Path: ccg/ch4/GLOBALVIEW], 2001.

which complies with the recommended reference styles of both the American Geophysical Union and the American Meteorological Society. See Section 2 (PARTICIPANTS) for a complete list of authors and contributors.

CONTENTS

- 1. OVERVIEW
- 2. PARTICIPANTS
- 3. METHODOLOGY AND STANDARD SCALES
- 4. CONTENT AND FORMATS
 - 4.1 EXTENDED RECORD
 - 4.2 WEIGHT FILE
 - 4.3 STATISTICAL SUMMARY AVERAGE MONTHLY VARIABILITY
 - 4.4 STATISTICAL SUMMARY AVERAGE SEASONAL CYCLE
 - 4.5 STATISTICAL SUMMARY AVERAGE DIURNAL CYCLE
 - 4.6 REFERENCE MARINE BOUNDARY LAYER MATRIX FILE
- 5. HOW TO USE GLOBALVIEW-CH₄
- 6. GLOBALVIEW-CH₄ ACCESS POINTS
- 7. UPDATES
- 8. COMMENTS/QUESTIONS
- 9. SAMPLING LOCATIONS
- 10. REFERENCES

APPENDIX A RELEASE NOTES

APPENDIX B TABLE: GLOBALVIEW-CH₄ SAMPLING LOCATIONS

GLOBALVIEW-CH₄, 2001 Cooperative Atmospheric Data Integration Project

**** Documentation File ****

1. OVERVIEW

GLOBALVIEW-CH₄ is a product of the Cooperative Atmospheric Data Integration Project. While the project is coordinated and maintained by the Carbon Cycle Greenhouse Gases Group of the National Oceanic and Atmospheric Administration, Climate Monitoring and

Diagnostics Laboratory (NOAA CMDL), it is a cooperative effort among the many organizations and institutions making high-quality atmospheric CH₄ measurements.

GLOBALVIEW-CH₄ is derived using the data extension and integration techniques described by *Masarie and Tans*, [1995] (reprints available upon request, see Section 8 (COMMENTS/QUESTIONS)). These techniques were developed using CO₂ measurements from the NOAA CMDL cooperative air sampling network. Methane measurement records from other laboratories have been extended and integrated with the NOAA CMDL measurements into GLOBALVIEW-CH₄ with careful attention to both methodology and standard scales.

The impetus for the work done by the many cooperating organizations and institutions is to make atmospheric measurements of trace gas species that will facilitate a better understanding of the processes controlling their abundance. These and other measurements have been widely used to constrain atmospheric models that derive plausible source/sink scenarios. Serious obstacles to this approach are the paucity of sampling sites and the lack of temporal continuity among observations from different locations. Consequently, there is the potential for models to misinterpret these spatial and temporal gaps resulting in derived source/sink scenarios that are unduly influenced by the sampling distribution.

GLOBALVIEW-CH₄ is an attempt to address these issues of temporal discontinuity and data sparseness and is a tool intended for use in carbon cycle modeling.

2. PARTICIPANTS

GLOBALVIEW-CH₄ is freely available to anyone. Its suggested use has been outlined above. Anyone using GLOBALVIEW-CH₄ is agreeing to acknowledge its authors. The list of cooperating scientists and their organizations and institutions is large and would be cumbersome to include as a reference, thus GLOBALVIEW-CH₄ and its contributors should be referenced as [*GLOBALVIEW-CH*₄, 2001], and in a list of references as

GLOBALVIEW-CH₄: Cooperative Atmospheric Data Integration Project - Methane. CD-ROM, NOAA CMDL, Boulder, Colorado [Also available on Internet via anonymous FTP to ftp.cmdl.noaa.gov, Path: ccg/ch4/GLOBALVIEW], 2001.

which complies with the recommended reference styles of both the American Geophysical Union and the American Meteorological Society. The following is a complete list of authors and contributors:

NOAA Climate Monitoring and Diagnostics Laboratory (CMDL), Boulder, Colorado, United States Data extension and integration techniques

Database management

K.A. Masarie

P.P. Tans

Commonwealth Scientific and Industrial Research Organization (CSIRO), Australia [Laboratory # 02]

L.P. Steele

R.J. Francey

R.L. Langenfelds

Meteorological Service of Canada (MSC), Canada

[Laboratory # 06]

D. Worthy

M. Ernst

Chinese Academy of Meteorological Sciences (CAMS), P.R. of China

[Laboratory # 33]

J. Tang

Y. Wen

L. Zhou

Fraunhofer Institute for Atmospheric Environmental Research (IFU), Germany in cooperation with Umweltbundesamt Zugspitze (UBA)

[Laboratory # 39]

E. Scheel

National Agency for New Technology, Energy, and Environment (ENEA), Global Environment Division (GEM), Italy

[Laboratory # 28]

P. Chamard

F. Monteleone

L. De Silvestri

A. di Sarra

P. Grigioni

S. Piacentino

Center for Global Environmental Research

National Institute for Environmental Studies (NIES), Japan

[Laboratory # 20]

M. Katsumoto

Y. Tohjima

National Institute of Water and Atmospheric Research (NIWA), New Zealand [Laboratory # 15]

D.C. Lowe

M.R. Manning

G.W. Brailsford

A.M. Bromley

A.J. Gomez

K.R. Lassey

South African Weather Service (SAWS), South Africa in cooperation with the Fraunhofer Institute for Atmospheric Environmental Research (IFU), Germany

[Laboratory # 36]

E. Brunke (SAWS)

C. Labuschagne (SAWS)

E. Scheel (IFU)

NOAA/Climate Monitoring and Diagnostics Laboratory (CMDL), United States

[Laboratory # 00]

E.J. Dlugokencky

P. Bakwin

D. Guenther

D. Hurst

P.M. Lang

3. METHODOLOGY AND STANDARD SCALES

Each measurement record used to derive GLOBALVIEW-CH₄ has been carefully edited and selected by the organization or institution contributing the observations. The measurement records are accumulated at NOAA CMDL along with documentation and references. Wherever possible, NOAA CMDL attempts to reproduce the selected data set based on descriptions in the literature. Details of methodology and standard scale can often be obtained from the documentation and literature. Selected measurements are then compared to other measurement records that are nearby in latitude as an additional assessment of potential calibration or sampling problems. Occasionally, two or more organizations make observations at the same location providing an opportunity to directly compare independent measurement programs [*Masarie et al.*, 2001].

At present, there is no internationally accepted CH₄ scale. Based on informal intercalibrations among several participating laboratories, relative differences of up to a few percent may exist among CH₄ standard scales. For measurements to be useful, it is necessary that observed gradients can be interpreted as CH₄ sources and sinks. To achieve this, the measurements integrated into GLOBALVIEW-CH₄ have been adjusted to a common scale.

The Cooperative Atmospheric Data Integration Project for Methane has agreed to adopt the CMDL scale for the purpose of constructing GLOBALVIEW-CH₄. While the CMDL scale may not be the best choice based on accuracy, it is a suitable choice for this application for two important reasons. First, the CMDL scale has been inter-calibrated with the scales used by MSC, NIWA, CSIRO, IUP-HD (indirectly through MSC), and SAWS/IFU (inter-comparisons of CMDL data with Cape Point data). Second, the majority of measurements used to derive GLOBALVIEW-CH₄ are from CMDL (70%) and CSIRO (21%). Based on results from the NOAA/CSIRO ongoing flask-air inter-comparison program at Cape Grim, Tasmania, these laboratories have established and maintained consistency to within 0.7 ppb (0.04% compared to the average mole fraction at Cape Grim) since 1992 [Masarie et al., 2001].

Each participating laboratory has provided a multiplicative adjustment factor based on intercalibrations with the CMDL scale. These adjustment factors used to derive the GLOBALVIEW-CH₄ product are listed below.

Measurement Program	Standard Scale	Multiplier factor (1 Std. Error)
CSIRO, Australia [02]	CSIRO94	0.99979 (0.00010)
MSC, Canada [06]	MSC	0.985 (0.001)
CAMS, China [33]	MSC	0.985 (0.001)
IFU, Germany [39]	CMDL	1.0
ENEA, Italy [28]	CMDL	1.0
NIES, Japan [20]	NIES Gravimetric	0.9850 (0.0001)
NIWA, New Zealand [15]	NIWA	0.986 (0.001)
SAWS/IFU, South Africa [37]	CMDL	1.0
CMDL, United States [00]	CMDL	1.0

PLEASE NOTE: The GLOBALVIEW-CH₄ data product includes these adjustments; **no adjustments by the user are required**.

Some laboratories have not yet inter-calibrated their scale with the CMDL scale. Data from these programs will be included in a future release of this product once an adjustment factor can be determined.

4. CONTENT AND FORMATS

GLOBALVIEW-CH₄, 2001 includes extended records for the synchronization period:

January 1, 1984 to January 1, 2001

This version using the most recent data is available to active participants of the Cooperative Atmospheric Data Integration Project for Methane.

Data product requires ~8 Mbytes of disk space.

January 1, 1984 to January 1, 1998

This version is available to the general public. It is a subset of the above version. Data product requires ~7 Mbytes of disk space.

For a complete description of the data extension procedure, see *Masarie and Tans* [1995].

Each extended record included in GLOBALVIEW-CH₄ contributes, at a minimum, four (4) UNIX text files. Encoded in the file name is the sampling location, platform, and strategy, contributing laboratory, file content, and gas identifier. All file names use the following naming scheme:

1. [Sampling site/program]

3-character alphanumeric field specifying site or program code.

2. [Grouping of data within the file]

If not specified then the sampling site is at a single fixed position.

If the sampling platform is an aircraft then identifier is a 3-character numeric field with units of 10^2 meters (hm) above sea level.

If the sampling platform is a tower then identifier is a 3-character numeric field with units of meters (m) above sea level.

If the sampling platform is a ship and binned by longitude then identifier is a 3-character numeric with units of degrees (000-360)

If the sampling platform is a ship and binned by latitude then identifier is a 3-character alphanumeric field with units of degrees. (00-90). Bins in the northern and southern

hemispheres are denoted as n## and s## respectively. The equatorial bin is denoted as 000.

```
(ex) pocs25_, poc000_, scsn03_
```

Note:

A binned file requires further explanation regarding the bin width, e.g., car050 is a 1000m bin centered on 5km. See Section 9 (SAMPLING LOCATIONS).

3. [Contributing laboratory]

Two character numeric field identifies the measurement laboratory (00-99). See Section 2 (PARTICIPANTS).

4. [Sampling strategy]

Single alphanumeric character (0-9,a-z,A-Z) indicates the sampling strategy.

_??D	Discrete
_??C	Continuous/Quasi-continuous
_??E	Event
??I	Integrated

5. [Sampling platform]

Single alphanumeric character (0-9,a-z,A-Z) indicates the sampling platform.

_???0	Single Fixed Position
_???1	Ship
_???2	Aircraft
_???3	Tower
_???4	Kite
_???5	Balloon
_???6	Firn/Ice Core

6. [Qualifier]

Multiple alphanumeric character field (0-9,a-z,A-Z) identifies the file's contents (see discussion below).

_????_ext	Extended Record
_????_wts	Extension Weights
_????_var	Atmospheric Variability Statistics

_????_seas	Seasonal Cycle Statistics
_????_diu	Diurnal Cycle Statistics
_????_mtx	MBL Reference Matrix

7. [Gas]

Identifies the trace gas species.

???????.co2	Carbon dioxide
???????.ch4	Methane

EXAMPLES

cgo_02D0_ext.ch4	Extended CH ₄ record derived from CSIRO discrete measurements at Cape Grim.
mlo_00D0_ext.ch4	Extended CH ₄ record derived from CMDL discrete measurements at Mauna Loa.
mlo_00C0_ext.ch4	Extended CH ₄ record derived from CMDL continuous measurements at Mauna Loa.
mlo_02D0_ext.ch4	Extended CH ₄ record derived from CSIRO discrete measurements at Mauna Loa.
pocn30_00D1_wts.ch4	Extension CH ₄ weight file derived from CMDL discrete measurements from POC centered at 30° N.
poc000_00D1_wts.ch4	Extension CH ₄ weight file derived from CMDL discrete measurements from POC centered at the equator.
pocs30_00D1_wts.ch4	Extension CH ₄ weight file derived from CMDL discrete measurements from POC centered at 30° S.
car040_00D2_seas.ch4	Average seasonal cycle of CH ₄ derived from the CMDL discrete measurements from aircraft. Altitude bin is centered at 4.0 km.
car040_00D2_var.ch4	Average atmospheric variability of CH_4 derived from the CMDL discrete measurements from aircraft. Altitude bin is centered at 4.0 km.
lef011_00C3_diu.ch4	Average diurnal cycle of CH ₄ derived from CMDL continuous measurements from a tower. Sampling height is 11 m.

There are 5 types of files that are included in GLOBALVIEW-CH₄. Each type is distinguished by its file name qualifier (see above). Files with an "ext" qualifier contain extended records, i.e., records that contain synchronized smoothed values, and interpolated and extrapolated values derived using the latitude reference data extension method. Files

with a "wts" qualifier contain weights that were applied by CMDL when fitting smooth curves to weekly distributions of CH₄ mole fraction as a function of latitude. Files with a "var" qualifier contain a statistical summary of atmospheric variability by month. Files with a "seas" qualifier contain a statistical summary of the average seasonal pattern by month. Files with a "diu" qualifier contain a statistical summary of average diurnal cycle patterns by month accumulated for all complete measurement years.

Files with the "ext", "wts", "var", and "seas" qualifier exist for all sites described in GLOBALVIEW-CH₄. Files with the "diu" qualifier accompany a subset of extended records derived from high-resolution measurement records where the diurnal cycle is a dominant feature of the observations.

All file types (except for reference MBL matrix) have 16 lines of descriptive information that include

- + Extended record name
- + Measurement organization or institution
- + Type of measurement program
- + Type of sampling site
- + Name of organization collecting air
- + Position of sampling site
- + Conversion from Universal Coordinated Time (UTC) to Local Standard Time (LST)
- + Creation date of the file
- + Number of rows in the file following the column description
- + Column descriptions

Following the descriptive information detailed above, the format of each type of file is as follows:

Extended	"ext"	F12.6, 3(F12.4)
Weight	"wts"	F12.6, 3(F12.4)
Atmospheric Variability	"var"	I5, 4(F12.4), I6
Seasonal Cycle	"seas"	I5, 3(F12.4), I6
Diurnal Cycle	"diu"	2(I5), 3(F9.4), I6
Reference Matrix	"mtx"	F12.6, 41(1X,F12.4)

There are no blank fields in any column. Missing values are denoted with a standard default value, -999.999. All units are nmol mol⁻¹ CH₄ unless otherwise specified.

4.1. EXTENDED RECORD

Following the descriptive information detailed above, the four (4) columns in the extended record files are:

COLUMN 1: [UTC] "Weekly" synchronized time steps in Universal Coordinated Time (UTC) as decimal dates, i.e., year plus fraction of the year. Each year has 48 "weekly" steps. "Synchronized" means that the synchronization period and the time steps are the same for all extended record files.

COLUMN 2: [S(t)] Smoothed values extracted from a curve fitted to measurement data that have been selected for conditions where the sampled air is thought to be representative of large well-mixed air parcels. Internal and external gaps in the measurement record are denoted as default values.

COLUMN 3: [REF(t)] The latitude reference time-series, based on marine boundary layer sites, constructed at the sine (latitude) of the measurement site. The latitude reference is defined at all time steps.

COLUMN 4: [diff] The difference climatology describes how the site differs from marine boundary layer (MBL) sites that are nearby in latitude. The difference climatology is defined at all time steps.

The length of the files depends on the number of years in the synchronization period.

4.2. WEIGHT FILE

Any method used to fill spatial and temporal gaps in observational records is forced to make assumptions creating uncertainty in the resulting data product. Each extended record included in GLOBALVIEW-CH₄ has a corresponding weight file that suggests a relative significance for each value in the extended file. All smooth values (derived directly from the actual measurements) receive a relative weight (ranging from 2 to 10) that depends on sampling density and measurement variability. All filled values (interpolated and extrapolated) receive a fixed weight of 1.

We strongly recommend that users of this data product consider the weight files, which provide an estimate of the relative significance of each value in the extended record.

Following the descriptive information detailed above, the four (4) columns in the weight files are:

COLUMN 1: [UTC] Synchronization year where the number of years is determined by the synchronization period.

COLUMN 2: [rsd] Residual standard deviation (RSD) of the measurements about the smooth curve, S(t), with annual resolution. Years with fewer than six (6) measurements are assigned default values.

COLUMN 3: [#] The number of residuals per year used in the RSD determination.

COLUMN 4: [weight] Scaled weights determined using the relative weighting scheme described by *Masarie and Tans*, [1995]. Years where weights cannot be determined are assigned a default minimum weight of one (1).

The length of the files depends on the number of years in the synchronization period. The first row past the descriptive information specifies the residual standard deviation, number of residuals, and derived weight for all years, all observations.

4.3. STATISTICAL SUMMARY - AVERAGE MONTHLY VARIABILITY

A statistical summary of average atmospheric variability is provided for each measurement record. A residual distribution is determined by fitting a smooth curve, S(t), to the observations, C(t), and computing residuals C(t)-S(t). The residuals for all Januarys, Februarys, etc are aggregated and statistics are determined with monthly resolution. The aggregated monthly statistics include within month and year-to-year variability. Information pertaining to the diurnal cycle is not considered here. Following the descriptive information detailed above, the six (6) columns in the "var" files are:

COLUMN 1: [mo] Month (1-12) specification.

COLUMN 2: [stdev] Standard deviation of the residual distribution computed monthly for all years.

COLUMN 3: [50%ile] The 50th percentile or median of the residual distribution.

COLUMN 4: [16%ile] The 16th percentile of the residual distribution.

COLUMN 5: [84%ile] The 84th percentile of the residual distribution.

COLUMN 6: [#] The number of aggregated monthly residual values used to compute the monthly statistics.

4.4. STATISTICAL SUMMARY - AVERAGE SEASONAL CYCLE

A statistical summary of the average seasonal cycle is provided for each measurement record. Monthly means are computed from a detrended smooth fit, S(t)–T(t), to the observations. The monthly means for all Januarys, Februarys, etc. are aggregated and statistics are determined with monthly resolution. The standard deviation of each aggregated monthly mean value is a measure of the year-to-year variability in the monthly mean values. The standard error of the aggregated monthly mean value is an estimate of the uncertainty in the aggregated monthly mean value. Following the descriptive information detailed above, the five (5) columns in the "seas" files are:

COLUMN 1: [mo] Month (1-12) specification.

COLUMN 2: [mean] Mean of the aggregated detrended monthly means for all years.

COLUMN 3: [stdev] Standard deviation of the aggregated monthly mean distribution.

COLUMN 4: [stderr] Standard error of the aggregated monthly mean distribution.

COLUMN 5: [#] The number of monthly mean values used to compute the aggregated monthly statistics.

4.5. STATISTICAL SUMMARY - AVERAGE DIURNAL CYCLE

A statistical summary of average diurnal cycles by month compiled using data from complete years is provided for each measurement record with hour resolution and where the diurnal cycle is a dominant feature in the observations. The residual distribution is determined by subtracting the 24-hour average mixing ratio for each day from every observation for that day. Note that for tall tower measurements, the 24-hour average is determined from measurements at the highest level. Following the descriptive information detailed above, the six (6) columns in the "diu" files are

COLUMN 1: [mo] Month (1-12) specification.

COLUMN 2: [hr in UTC] Hour (0-23) specification.

COLUMN 3: [50%ile] The 50th percentile or median of the residual distribution computed monthly for all complete years.

COLUMN 4: [16%ile] The 16th percentile of the residual distribution.

COLUMN 5: [84%ile] The 84th percentile of the residual distribution.

COLUMN 6: [#] The number of residual values from complete years used to compute the monthly statistics.

4.6 REFERENCE MARINE BOUNDARY LAYER MATRIX

The reference marine boundary layer matrix contains CH₄ mixing ratios as a function of time and sine of latitude and is a by-product of the data extension procedure (see *Masarie and Tans*, [1995] and Appendix A (RELEASE NOTES) for details). Be aware that significant information contained in the actual data may be lost in this matrix. In addition, the reference MBL matrix itself may give an unrealistic impression of the comprehensiveness of global atmospheric CH₄ measurements since it contains CH₄ values at locations and times when no measurements exist.

There is a single header line in the matrix file that specifies the format of the reference matrix.

+ Matrix format: FORMAT="(F12.6, 41(1X,F12.4))"

Following the single header line above, the 42 columns are

COLUMN 1: [UTC] "Weekly" synchronized time steps in Universal Coordinated Time (UTC) as decimal dates, i.e., year plus fraction of the year. Each year has 48 "weekly" steps. "Synchronized" means that the synchronization period and time steps in the matrix are identical to those in the extended record files.

COLUMNS 2-42: [sine of latitude] There are 41 even intervals of 0.05 sine of latitude from 90°S to 90°N, i.e., column 2 represents a reference MBL value at -1.00 (90°S), column 3 at -0.95 (71.8°S), column 4 at -0.90 (64.2°S), and so on.

The number of rows in the matrix depends on the number of years in the synchronization period.

5. HOW TO USE GLOBALVIEW-CH₄

The extended records (files with an "ext" qualifier) are comprised of smoothed values, and interpolated and extrapolated values defined at each time step of the synchronization period. Those who wish to use extended records in their modeling application must simply add the reference MBL vector (COLUMN 3) to the difference climatology (COLUMN 4), i.e., extended record = REF + diff. Users will notice that S(t) = REF + diff wherever smoothed values (COLUMN 2) exist.

You may also choose to use only the smoothed values (COLUMN 2) from the sites that are synchronized which will have assigned default values where there are no measurements.

PLEASE NOTE: Discontinuities within periods of interpolated or extrapolated values may occur when MBL measurement records begin, end, or are interrupted for long periods of time (See Appendix A (RELEASE NOTES) for details). Some discontinuities may be significant in certain modeling applications. Serious discontinuities are identified below.

Time step	Latitude ^a	Cause
1984.208333	5°N	CMDL sampling program at Christmas Island, Kiribati begins
1985.354167	28°N	CMDL sampling program at Sand Island, Midway begins
1987.000000	25°S	CMDL shipboard sampling in Pacific Ocean begins
1989.125000	32°N	CMDL sampling program at Bermuda begins

^aSpecifies the 5° latitude band most strongly influenced by the change in the MBL measurement distribution

PLEASE NOTE: The data extension procedure requires at least 2 years of observations. Because the GLOBALVIEW-CH₄ version released to the general public is a subset of the version available to members of the Cooperative Atmospheric Data Integration Project for Methane, some extended records may have no smoothed values. This occurs when measurements commence later than the last year included in the subset.

Relative weighting of each value in an extended record can be important because some points are better determined than others. Confidence in the smoothed values depends on the density of the data, the relative occurrence of rejected data, the "scatter" in the data, the type and number of corrections applied, and the length of the measurement period. *Masarie and Tans* [1995] describe in detail the relative weighting scheme and provide an example of how extended records and relative weights have been used in a 2-D modeling application. Users may choose to ignore our weighting scheme; sufficient information is included in the weight files so that users may devise their own weighting scheme.

6. GLOBALVIEW-CH₄ ACCESS POINTS

The current release of GLOBALVIEW-CH₄ is available on

- (a) <u>CD-ROM</u> from NOAA CMDL, Boulder, Colorado. Contact Ken Masarie: Phone (303) 497-6270, E-mail Kenneth.Masarie@noaa.gov.
- **(b) Internet** via anonymous FTP to ftp.cmdl.noaa.gov, Path: ccg/ch4/GLOBALVIEW.

To retrieve GLOBALVIEW-CH₄, execute the following FTP command sequence:

ftp> binary ftp> cd ccg/ch4/GLOBALVIEW/gv ftp> mget *

```
ftp> bye
```

or

The file "GLOBALVIEW.tar.Z" is a compressed tar file containing all of the files in the 'GLOBALVIEW/gv' directory. In this case, execute the following:

```
ftp> binary
ftp> cd ccg/ch4/GLOBALVIEW
ftp> get GLOBALVIEW.tar.Z
ftp> bye
```

Then on your system:

```
$ uncompress GLOBALVIEW.tar.Z $ tar xvf GLOBALVIEW.tar
```

or

The file "GLOBALVIEW.zip" is a zipped file containing all of the files in the 'GLOBALVIEW/gv' directory. In this case, transfer the file to the local system (as above) and "unzip".

(c) World Wide Web access at

http://www.cmdl.noaa.gov/ccgg/globalview/index.html.

7. UPDATES

GLOBALVIEW-CH₄ is updated once every 2 years.

Last Update: December 28, 2001

8. COMMENTS/QUESTIONS

Comments and/or questions should be directed to:

Ken Masarie NOAA R/CMDL1 325 Broadway Boulder, Colorado, 80305-3328 U.S.A. E-mail: Kenneth.Masarie@noaa.gov

Phone: (303) 497-6270 Fax: (303) 497-6290

9. SAMPLING LOCATIONS

The following list provides general information on sampling locations for measurement records used to derive GLOBALVIEW-CH₄. The descriptive information includes

- + Sample location identification code (3-6 character fields, upper case). Note that in some instances the identification code indicate position.
- + Location of the sampling site.
- + Organization collecting the air sample or making the measurements.
- + General description of the sampling program.
- + Position of the sampling site where latitude is in degrees (000 is at the equator, north of the equator is positive (+), and south of the equator negative (-)), longitude is in degrees (east of Meridian of Greenwich is positive (+), and west of Meridian of Greenwich is negative (-)), and the altitude is in meters above sea level (masl).
- + General description of available measurements including contributing laboratory (see Section 2 (PARTICIPANTS) for details), sampling strategy, resolution of measurements used in GLOBALVIEW-CH₄, and time period of the measurements.

Note that the span of the measurements may extend beyond the synchronization period defined for this release of GLOBALVIEW-CH₄. These more recent measurements have been used to better define the smooth curve, S(t), and will be included in a future release of GLOBALVIEW-CH₄.

AIA005, Bass Strait/Cape Grim, Australia CSIRO, Division of Atmospheric Research Aircraft site *CSIRO, Flask/Weekly	-40.53, 144.30 1992 05 – 2000 09	[0-1000] ^a
AIA015, Bass Strait/Cape Grim, Australia CSIRO, Division of Atmospheric Research Aircraft site *CSIRO, Flask/Weekly	-40.53, 144.30 1992 05 – 2000 09	[1000-2000] ^a
AIA025, Bass Strait/Cape Grim, Australia CSIRO, Division of Atmospheric Research Aircraft site *CSIRO, Flask/Weekly	-40.53, 144.30 1992 05 – 2000 09	[2000-3000] ^a

AIA035, Bass Strait/Cape Grim, Australia CSIRO, Division of Atmospheric Research Aircraft site *CSIRO, Flask/Weekly	-40.53, 144.30 1992 05 – 2000 09	[3000-4000] ^a	
AIA045, Bass Strait/Cape Grim, Australia CSIRO, Division of Atmospheric Research Aircraft site *CSIRO, Flask/Weekly	-40.53, 144.30 1992 05 – 2000 09	[4000-5000] ^a	
AIA055, Bass Strait/Cape Grim, Australia CSIRO, Division of Atmospheric Research Aircraft site *CSIRO, Flask/Weekly	-40.53, 144.30 1992 05 – 2000 09	[5000-6000] ^a	
AIA065, Bass Strait/Cape Grim, Australia CSIRO, Division of Atmospheric Research Aircraft site *CSIRO, Flask/Weekly	-40.53, 144.30 1992 05 – 2000 09	[6000-7000] ^a	
ALT, Alert, Nunavut, Canada Environment Canada/Meteorological Service of Land site *MSC, Continuous/Daily Averages *CMDL, Flask/Weekly *CSIRO, Flask/Weekly	f Canada 82.45, -62.52 1988 01 – 2000 12 1985 06 – 2000 12 1991 04 – 2000 12	210	
AMS, Amsterdam Island, France Laboratoire des Sciences du Climat et de l'Environnement (LSCE) Land site -37.95, 77.53 150 *CMDL, Flask/Weekly 1983 01 – 1990 12			
ASC, Ascension Island, U.K. DOD/U.S.A.F. and Pan American World Airw Land site *CMDL, Flask/Weekly	vays -7.92, -14.42 1983 05 – 2000 12	54	
ASK, Assekrem, Algeria Tamanrasset GAW Observatory Land site *CMDL, Flask/Weekly	23.18, 5.42 1995 09 – 2000 12	2728	

AVI, St. Croix, Virgin Islands, U.S.A. Fairleigh Dickinson University Land site *CMDL, Flask/Weekly	17.75, -64.75 1983 05 – 1990 08	3
AZR, Terceira Island, Azores, Portugal DOD/U.S.A.F. (7th Weather Wing)	20.75 27.00	20
Land site *CMDL, Flask/Weekly	38.75, -27.08 1983 05 – 2000 12	30
BAL, Baltic Sea, Poland MIR, Sea Fisheries Institute Shipboard - fixed position *CMDL, Flask/Weekly	55.50, 16.67 1992 09 – 2000 12	7
DIID Dowing Hood Station New Zooland		
BHD, Baring Head Station, New Zealand National Institute for Water and Atmospheric Land site *NIWA, Flask/Weekly	Research (NIWA) -41.41, 174.87 1989 08 – 2000 12	80
BME, St. David's Head, Bermuda, U.K.		
Bermuda Biological Station		
Land site *CMDL, Flask/Weekly	32.37, -64.65 1989 02 – 2000 12	30
BMW, Southhampton, Bermuda, U.K. Bermuda Biological Station (AEROCE) Land site	32.27, -64.88	30
*CMDL, Flask/Weekly	1989 05 – 2000 12	30
BRW, Barrow, Alaska, U.S.A. NOAA/Office of Oceanic and Atmospheric Re Land site *CMDL, Flask/Weekly *CMDL, Continuous/Daily Averages	esearch (CMDL Observatory) 71.32, -156.60 1983 04 – 2000 12 1986 02 – 2000 12	11
BSC, Black Sea, Constanta, Romania Romanian Marine Research Institute		
Land site	44.17, 28.68	3
*CMDL, Flask/Weekly	1994 10 – 2000 12	
CAR030, Carr, Colorado, U.S.A.		

NOAA CMDL Carbon Cycle Greenhouse Ga Aircraft site *CMDL, Flask/Weekly	ses Group 40.90, -104.80 1992 11 – 2000 12	[2500-3500] ^a
CAR040, Carr, Colorado, U.S.A. NOAA CMDL Carbon Cycle Greenhouse Ga Aircraft site *CMDL, Flask/Weekly	ses Group 40.90, -104.80 1992 11 – 2000 12	[3500-4500] ^a
CAR050, Carr, Colorado, U.S.A. NOAA CMDL Carbon Cycle Greenhouse Ga Aircraft site *CMDL, Flask/Weekly	ses Group 40.90, -104.80 1992 11 – 2000 12	[4500-5500] ^a
CAR060, Carr, Colorado, U.S.A. NOAA CMDL Carbon Cycle Greenhouse Ga Aircraft site *CMDL, Flask/Weekly	ses Group 40.90, -104.80 1992 11 – 2000 12	[5500-6500] ^a
CAR070, Carr, Colorado, U.S.A. NOAA CMDL Carbon Cycle Greenhouse Ga Aircraft site *CMDL, Flask/Weekly	ses Group 40.90, -104.80 1995 06 – 2000 12	[6500-7500] ^a
CAR080, Carr, Colorado, U.S.A. NOAA CMDL Carbon Cycle Greenhouse Ga Aircraft site *CMDL, Flask/Weekly	ses Group 40.90, -104.80 1995 06 – 2000 12	[7500-8500] ^a
CBA, Cold Bay, Alaska, U.S.A. NOAA/National Weather Service Land site *CMDL, Flask/Weekly	55.20, -162.72 1983 05 – 2000 12	25
CFA, Cape Ferguson, Queensland, Australia CSIRO, Division of Atmospheric Research Land site *CSIRO, Flask/Weekly	-19.28, 147.06 1991 06 – 2000 12	2
CGO, Cape Grim, Tasmania, Australia CSIRO, Division of Atmospheric Research Land site	-40.68, 144.68	94

*CMDL, Flask/Weekly *CSIRO, Flask/Weekly	1984 04 – 2000 12 1991 06 – 2000 12	
CHR, Christmas Island, Kiribati Scripps Institution of Oceanography Land site *CMDL, Flask/Weekly	1.70, -157.17 1984 04 – 2000 12	3
CMO, Cape Meares, Oregon, U.S.A. Oregon Graduate Institute of Science and Tech Land site *CMDL, Flask/Weekly	nnology 45.48, -123.97 1983 05 – 1998 03	30
COI, Cape Ochi-ishi, Japan National Institute for Environmental Studies Land site *NIES, Continuous/Daily Averages	43.15, 145.50 1995 07 – 2000 12	100
CPT, Cape Point, South Africa South African Weather Service Land site *SAWS/IFU, Continuous/Daily Averages	-34.35, 18.49 1983 01 - 2000 12	230+30
CRI, Cape Rama, India CSIRO, Division of Atmospheric Research Land site *CSIRO, Flask/Weekly	15.08, 73.83 1993 02 – 2000 06	60
CRZ, Crozet, Indian Ocean, France Laboratoire des Sciences du Climat et de l'Env Land site *CMDL, Flask/Weekly	ironnement (LSCE) -46.45, 51.85 1991 03 – 2000 12	120
DAA, Darwin (Charles Point), Northern Terri CSIRO, Division of Atmospheric Research Land site *CSIRO, Flask/Weekly	-12.42, 130.57 1992 10 – 1998 12	3
EIC, Easter Island, Chile Direccion Meteorologica de Chile Land site *CMDL, Flask/Weekly	-29.15, -109.43 1994 01 – 2000 12	50

ESP, Estevan Point, British Columbia, Canada Environment Canada/Meteorological Service of Land site *CSIRO, Flask/Tri-Weekly		39
FRD, Fraserdale, Ontario, Canada Environment Canada/Meteorological Service of Land site *MSC, Continuous/Daily Averages	f Canada 49.88, -81.57 1990 01 – 2000 12	250
GMI, Guam, Mariana Islands, U.S.A. University of Guam/Marine Laboratory Land site *CMDL, Flask/Weekly	13.43, 144.78 1983 05 – 2000 12	2
GOZ, Dwejra Point, Gozo, Malta Ministry of Environment, PCCU Land site *CMDL, Flask/Weekly	36.05, 14.18 1993 10 – 1999 02	30
HAA005, Molokai Island, Hawaii, U.S.A. Hawaii Air Ambulance Aircraft site *CMDL, Flask/Tri-Weekly	21.23, -158.95 1999 05 – 2000 12	[0-1000] ^a
HAA015, Molokai Island, Hawaii, U.S.A. Hawaii Air Ambulance Aircraft site *CMDL, Flask/Tri-Weekly	21.23, -158.95 1999 05 – 2000 12	[1000-2000] ^a
HAA025, Molokai Island, Hawaii, U.S.A. Hawaii Air Ambulance Aircraft site *CMDL, Flask/Tri-Weekly	21.23, -158.95 1999 05 – 2000 12	[2000-3000] ^a
HAA035, Molokai Island, Hawaii, U.S.A. Hawaii Air Ambulance Aircraft site *CMDL, Flask/Tri-Weekly	21.23, -158.95 1999 05 – 2000 12	[3000-4000] ^a
HAA045, Molokai Island, Hawaii, U.S.A.		

Hawaii Air Ambulance Aircraft site *CMDL, Flask/Tri-Weekly	21.23, -158.95 1999 05 – 2000 12	[4000-5000] ^a
HAA055, Molokai Island, Hawaii, U.S.A. Hawaii Air Ambulance Aircraft site *CMDL, Flask/Tri-Weekly	21.23, -158.95 1999 05 – 2000 12	[5000-6000] ^a
HAA065, Molokai Island, Hawaii, U.S.A. Hawaii Air Ambulance Aircraft site *CMDL, Flask/Tri-Weekly	21.23, -158.95 1999 05 – 2000 12	[6000-7000] ^a
HAA075, Molokai Island, Hawaii, U.S.A. Hawaii Air Ambulance Aircraft site *CMDL, Flask/Tri-Weekly	21.23, -158.95 1999 05 – 2000 12	[7000-8000] ^a
HAT, Hateruma Island, Japan National Institute for Environmental Studies Land site *NIES, Continuous/Daily Averages	24.05, 123.80 1996 01 – 2000 12	47
HBA, Halley Bay, Antarctica, U.K. British Antarctic Survey Land site *CMDL, Flask/Weekly	-75.67, -25.50 1983 01 – 2000 12	10
HUN, Hegyhatsal, Hungary Hungarian Meteorological Service Land site *CMDL, Flask/Weekly	46.95, 16.65 1993 03 – 2000 12	248+96
ICE, Storhofdi, Heimaey, Vestmannaeyjar Icelandic Meteorological Service Land site *CMDL, Flask/Weekly	63.25, -20.15 1992 10 – 2000 12	100
ITN, Grifton, North Carolina, U.S.A. NOAA CMDL Carbon Cycle Greenhouse Ga Tower site	ses Group 35.35, -77.38	9+496

*CMDL, Flask/Weekly	1992 07 – 1999 06	
ITN051, Grifton, North Carolina, U.S.A. NOAA CMDL Carbon Cycle Greenhouse Ga Tower site *CMDL, Continuous/Daily Averages	ses Group 35.35, -77.38 1992 06 – 1999 06	9+51
ITN123, Grifton, North Carolina, U.S.A. NOAA CMDL Carbon Cycle Greenhouse Ga Tower site *CMDL, Continuous/Daily Averages	ses Group 35.35, -77.38 1992 06 – 1999 06	9+123
ITN496, Grifton, North Carolina, U.S.A. NOAA CMDL Carbon Cycle Greenhouse Ga Tower site *CMDL, Continuous/Daily Averages	ses Group 35.35, -77.38 1992 06 – 1999 06	9+496
IZO, Tenerife, Canary Islands, Spain Izana Observatory Land site *CMDL, Flask/Weekly	28.30, -16.48 1991 11 – 2000 12	2360
KEY, Key Biscayne, Florida, U.S.A. NOAA/Environmental Research Laboratory (Land site *CMDL, Flask/Weekly	AOML) 25.67, -80.20 1983 10 – 2000 12	3
KUM, Cape Kumukahi, Hawaii, U.S.A. NOAA/Office of Oceanic and Atmospheric Re Land site *CMDL, Flask/Weekly	esearch (CMDL Sampling Site) 19.52, -154.82 1983 04 – 2000 12	3
KZD, Sary Taukum, Kazakstan Kazakh Scientific Institute of Environmental M Land site *CMDL, Flask/Weekly	Monitoring and Climate 44.45, 77.57 1997 10 – 2000 12	412
KZM, Plateau Assy, Kazakstan Kazakh Scientific Institute of Environmental M Land site *CMDL, Flask/Weekly	Monitoring and Climate 43.25, 77.88 1997 10 – 2000 12	2519

LEF, Park Falls, Wisconsin, U.S.A. NOAA CMDL Carbon Cycle Greenhouse Gas Tower site	ses Group 45.93, -90.27	472+396
*CMDL, Flask/Weekly	1994 11 – 2000 12	412+370
CMDL, Flask/ Weekly	1994 11 – 2000 12	
LEF030, Park Falls, Wisconsin, U.S.A.		
NOAA CMDL Carbon Cycle Greenhouse Gas	-	
Tower site	45.93, -90.27	472 + 30
*CMDL, Continuous/Daily Averages	1995 06 – 2000 09	
LEF076, Park Falls, Wisconsin, U.S.A.		
NOAA CMDL Carbon Cycle Greenhouse Gas	ses Group	
Tower site	45.93, -90.27	472 + 76
*CMDL, Continuous/Daily Averages	1995 06 – 2000 09	
LEF396, Park Falls, Wisconsin, U.S.A.		
NOAA CMDL Carbon Cycle Greenhouse Gas	•	
Tower site	45.93, -90.27	472+396
*CMDL, Continuous/Daily Averages	1995 06 – 2000 09	
LMP, Lampedusa, Italy ENEA, Italy		
Land site	35.52, 12.62	85
*ENEA, Flask/Weekly	1995 01 – 2000 12	0.5
LIVE/Y, I lask/ Weekly	1993 01 – 2000 12	
MAA, Mawson Station, Antarctica		
CSIRO, Division of Atmospheric Research		
Land site	-67.62, 62.87	32
*CSIRO, Flask/Weekly	1990 01 – 2000 10	
MBC, Mould Bay, Nunavut, Canada		
Environment Canada/Meteorological Service of		~0
Land site	76.25, -119.35	58
*CMDL, Flask/Weekly	1983 04 – 1997 05	
MHD, Mace Head, County Galway, Ireland		
University College Atmospheric Research Stat	,	2.5
Land site	53.33, -9.90	25
*CMDL, Flask/Weekly	1991 06 – 2000 12	
MID, Sand Island, Midway, U.S.A.		

DOD/U.S.N.

Land site *CMDL, Flask/Weekly	28.22, -177.37 1985 05 – 2000 12	4
MLO, Mauna Loa, Hawaii, U.S.A. NOAA/Office of Oceanic and Atmospheric Re Land site *CMDL, Flask/Weekly *CMDL, Continuous/Daily Averages *CSIRO, Flask/Weekly	esearch (CMDL Observatory) 19.53, -155.58 1983 05 – 2000 12 1987 04 – 2000 12 1991 05 – 2000 12	3397
MQA, Macquarie Island, South Pacific Ocean CSIRO, Division of Atmospheric Research Land site *CSIRO, Flask/Weekly	-54.48, 158.97 1990 04 – 2000 10	12
NWR, Niwot Ridge, Colorado, U.S.A. University of Colorado/INSTAAR Land site *CMDL, Flask/Weekly	40.05, -105.58 1983 05 – 2000 12	3475
PFA025, Poker Flats, Alaska, U.S.A. Warbelows Air Ventures, Inc. Aircraft site *CMDL, Flask/ Monthly	65.07, -147.29 1999 06 – 2000 12	[2000-3000] ^a
PFA035, Poker Flats, Alaska, U.S.A. Warbelows Air Ventures, Inc. Aircraft site *CMDL, Flask/ Monthly	65.07, -147.29 1999 06 – 2000 12	[3000-4000] ^a
PFA045, Poker Flats, Alaska, U.S.A. Warbelows Air Ventures, Inc. Aircraft site *CMDL, Flask/ Monthly	65.07, -147.29 1999 06 – 2000 12	[4000-5000] ^a
PFA055, Poker Flats, Alaska, U.S.A. Warbelows Air Ventures, Inc. Aircraft site *CMDL, Flask/ Monthly	65.07, -147.29 1999 06 – 2000 12	[5000-6000] ^a
PFA065, Poker Flats, Alaska, U.S.A. Warbelows Air Ventures, Inc.		

Aircraft site *CMDL, Flask/ Monthly	65.07, -147.29 1999 06 – 2000 12	[6000-7000] ^a
PFA075, Poker Flats, Alaska, U.S.A. Warbelows Air Ventures, Inc. Aircraft site *CMDL, Flask/ Monthly	65.07, -147.29 1999 06 – 2000 12	[7000-8000] ^a
POCN45, Pacific Ocean Blue Star Line, Ltd. Shipboard site *CMDL, Flask/Tri-Weekly	[42.50 47.50], [-134.0128.0] ^a 1986 12 – 1996 08	10
POCN40, Pacific Ocean Blue Star Line, Ltd. Shipboard site *CMDL, Flask/Tri-Weekly	[37.50 42.50], [-140.0132.0] ^a 1986 12 – 1996 08	10
POCN35, Pacific Ocean Blue Star Line, Ltd. Shipboard site *CMDL, Flask/Tri-Weekly	[32.50 37.50], [-148.0126.0] ^a 1986 12 – 1996 08	10
POCN30, Pacific Ocean Blue Star Line, Ltd. Shipboard site *CMDL, Flask/Tri-Weekly	[27.50 32.50], [-150.0120.0] ^a 1986 12 – 2000 07	10
POCN25, Pacific Ocean Blue Star Line, Ltd. Shipboard site *CMDL, Flask/Tri-Weekly	[22.50 27.50], [-156.0122.0] ^a 1986 12 – 2000 07	10
POCN20, Pacific Ocean Blue Star Line, Ltd. Shipboard site *CMDL, Flask/Tri-Weekly	[17.50 22.50], [-158.0124.0] ^a 1986 12 – 2000 07	10
POCN15, Pacific Ocean Blue Star Line, Ltd. Shipboard site *CMDL, Flask/Tri-Weekly	[12.50 17.50], [-162.0128.0] ^a 1986 12 – 2000 07 27	10

POCN10, Pacific Ocean Blue Star Line, Ltd. Shipboard site *CMDL, Flask/Tri-Weekly	[7.50 12.50], [-166.0132.0] ^a 1986 12 – 2000 07	10
POCN05, Pacific Ocean Blue Star Line, Ltd. Shipboard site *CMDL, Flask/Tri-Weekly	[2.50 7.50], [-168.0134.0] ^a 1986 12 – 2000 07	10
POC000, Pacific Ocean Blue Star Line, Ltd. Shipboard site *CMDL, Flask/Tri-Weekly	[-2.50 +2.50], [-172.0138.0] ^a 1986 12 – 2000 07	10
POCS05, Pacific Ocean Blue Star Line, Ltd. Shipboard site *CMDL, Flask/Tri-Weekly	[-7.502.50], [-176.0142.0] ^a 1986 12 – 2000 07	10
POCS10, Pacific Ocean Blue Star Line, Ltd. Shipboard site *CMDL, Flask/Tri-Weekly	[-12.507.50], [-178.0144.0] ^a 1986 12 – 2000 07	10
POCS15, Pacific Ocean Blue Star Line, Ltd. Shipboard site *CMDL, Flask/Tri-Weekly	[-17.5012.50], [178.0160.0] ^a 1986 12 – 2000 07	10
POCS20, Pacific Ocean Blue Star Line, Ltd. Shipboard site *CMDL, Flask/Tri-Weekly	[-22.5017.50], [176.0164.0] ^a 1986 12 – 2000 07	10
POCS25, Pacific Ocean Blue Star Line, Ltd. Shipboard site *CMDL, Flask/Tri-Weekly	[-27.5022.50], [178.0160.0] ^a 1986 12 – 2000 07	10
POCS30, Pacific Ocean		

Blue Star Line, Ltd. Shipboard site *CMDL, Flask/Tri-Weekly	[-32.5027.50], [176.0168.0] ^a 1986 12 – 2000 07	10
POCS35, Pacific Ocean Blue Star Line, Ltd. Shipboard site *CMDL, Flask/Tri-Weekly	[-37.5032.50], [160.0176.0] ^a 1986 12 – 2000 07	10
PSA, Palmer Station, Antarctica, U.S.A. National Science Foundation Land site *CMDL, Flask/Weekly	-64.92, -64.00 1983 01 – 2000 02	10
RPB, Ragged Point, St. Phillip's Parish, Barbad University of Bristol (P. Simmonds)		2
Land site *CMDL, Flask/Weekly	13.17, -59.43 1987 11 – 2000 12	3
SCSN21, South China Sea Chevron/Nippon Yusen Kaisha (NYK) Shipboard site *CMDL, Flask/Weekly	[19.50 22.50] ^a , 117.00 1991 07 – 1998 10	15
SCSN18, South China Sea Chevron/Nippon Yusen Kaisha (NYK) Shipboard site *CMDL, Flask/Weekly	[16.50 19.50] ^a , 115.00 1991 07 – 1998 10	15
SCSN15, South China Sea Chevron/Nippon Yusen Kaisha (NYK) Shipboard site *CMDL, Flask/Weekly	[13.50 16.50] ^a , 113.00 1991 07 – 1998 10	15
SCSN12, South China Sea Chevron/Nippon Yusen Kaisha (NYK) Shipboard site *CMDL, Flask/Weekly	[10.50 13.50] ^a , 111.00 1991 07 – 1998 10	15
SCSN09, South China Sea Chevron/Nippon Yusen Kaisha (NYK) Shipboard site	[7.50 10.50] ^a , 109.00	15

*CMDL, Flask/Weekly	1991 07 – 1998 10,	
SCSN06, South China Sea Chevron/Nippon Yusen Kaisha (NYK) Shipboard site *CMDL, Flask/Weekly	[4.50 7.50] ^a , 107.00 1991 07 – 1998 10	15
SCSN03, South China Sea Chevron/Nippon Yusen Kaisha (NYK) Shipboard site *CMDL, Flask/Weekly	[1.50 4.50] ^a , 105.00 1991 07 – 1998 10	15
SEY, Mahe Island, Seychelles DOD/U.S.A.F. Land site *CMDL, Flask/Weekly	-4.67, 55.17 1983 05 – 2000 12	3
SHM, Shemya Island, Alaska, U.S.A. DOD/U.S.A.F. Land site *CMDL, Flask/Weekly	52.72, 174.10 1985 09 – 2000 12	40
SIS, Shetland Islands, Scotland CSIRO, Division of Atmospheric Research Land site *CSIRO, Flask/Weekly	60.17, -1.17 1992 11 – 2000 11	30
SMO, Tutuila, American Samoa, U.S.A. NOAA/Office of Oceanic and Atmospheric R Land site *CMDL, Flask/Weekly	desearch (CMDL Observatory) -14.25, -170.57 1983 04 – 2000 12	42
SPO, South Pole, Antarctica, U.S.A. (CMDL Observatory)/N.S.F. Land site *CMDL, Flask/Weekly *CSIRO, Flask/Monthly	-89.98, -24.80 1983 02 – 2000 12 1991 03 – 2000 12	2810
STM, Atlantic Ocean (Polarfront), Norway Norway Meteorological Institute (Ocean Stat Shipboard - fixed position *CMDL, Flask/Weekly	ion "M") 66.00, 2.00 1983 04 – 2000 12	7

SYO, Syowa Station, Antarctica, Japan Upper Atmospheric and Space Laboratory, T Land site *CMDL, Flask, Weekly	Γohoku University -69.00, 39.58 1986 01 – 2000 12	11
TAP, Tae-ahn Peninsula, Korea		
Korea National University of Education	26.72 126.12	20
Land site *CMDL, Flask/Weekly	36.73, 126.13 1990 11 – 2000 12	20
TDF, Tierra Del Fuego, La Redonda Isla, Arg	gentina	
Servicio Meteorologico Nacional	54.05 60.40	20
Land site	-54.87, -68.48	20
*CMDL, Flask/Weekly	1994 09 – 2000 12	
UTA, Wendover, Utah, U.S.A.		
NOAA/National Weather Service		
Land site	39.90, -113.72	1320
*CMDL, Flask/Weekly	1995 05 – 2000 12	
UUM, Ulaan Uul, Mongolia		
Mongolian Hydrometeorological Research In	stitute	
Land site	44.45, 111.10	914
*CMDL, Flask/Weekly	1992 01 – 2000 12	
WIS, Sede Boker (Negev Desert), Israel		
Weizmann Institute of Science		
Land site	31.13, 34.88	400
*CMDL, Flask/Weekly	1995 11 – 2000 12	
WLG, Mt. Waliguan Baseline Observatory, I	Peoples Republic of China	
Chinese Academy of Meteorological Sciences	1 1	
Land site	36.27, 100.92	3810
*CAMS, Continuous/Daily Averages	1994 08 – 2000 12	
*CMDL, Flask/Weekly	1990 08 – 2000 12	
ZEP, Zeppelin Station, Ny-Alesund, Svalbar	d (Spitsbergen), Norway	
Department of Meteorology, Stockholm Uni		
Land site	78.90, 11.88	474
*CMDL, Flask/Weekly	1994 02 – 2000 12	

ZUG, Zugspitze Station, Germany

Fraunhofer Institute for Atmospheric Environmental Research

Land site 47.42, 10.98 2962

*IFU, Continuous/Daily Averages 1992 01 – 2000 12

10. REFERENCES

Data Extension and Integration Techniques

Masarie, K.A., R.L. Langenfelds, C.E. Allison, T.J. Conway, E.J. Dlugokencky, R.J. Francey, P.C. Novelli, L.P. Steele, P.P. Tans, B. Vaughn, and J.W.C. White, "The NOAA/CSIRO Flask-Air Intercomparison Program: A strategy for directly assessing consistency among atmospheric measurements derived from independent laboratories." Journal of Geophysical Research, Vol. 106, No. D17, p. 20445-20464, 2001.

Masarie, K.A. and P.P Tans, "Extension and Integration of Atmospheric Carbon Dioxide Data into a Globally Consistent Measurement Record." Journal of Geophysical Research, Vol. 100, No. D6, p. 11593-11610. June 1995.

Commonwealth Scientific and Industrial Research Organization (CSIRO), Australia

Pak, B.C., M. Ramonet, P. Monfray, R.J. Francey and I.Simmonds, Assessment of the spatial and temporal representativeness of the Cape Grim overflight data, in Baseline Atmospheric Program (Australia) 1996, Bureau of Meteorology and CSIRO Division of Atmospheric Research, Melbourne, Australia, in press.

Francey, R.J., L.P. Steele, R.L. Langenfelds, C.E. Allison, L.N. Cooper, B.L. Dunse, B.G. Bell, T.D. Murray, H.S. Tait, L. Thompson and K.A. Masarie, Atmospheric carbon dioxide and its stable isotope ratios, methane, carbon monoxide and hydrogen from Shetland Isles, Atmos. Environ., Vol. 32, No. 19, 3331-3338, 1998.

Langenfelds, R.L., R.J. Francey, L.P. Steele, P.J. Fraser, S.A. Coram, M.R. Hayes, D.J. Beardsmore, M.P. Lucarelli, and F.R. de Silva, Improved vertical sampling of the trace gas composition of the troposphere above Cape Grim since 1991, in Baseline Atmospheric Program (Australia) 1993, edited by R.J. Francey, A.L. Dick and N. Derek, pp 45-56, Bureau of Meteorology and CSIRO Division of Atmospheric Research, Melbourne, Australia, 1996.

Pak, B.C., Langenfelds, R.L., R.J. Francey, L.P. Steele and I.Simmonds, A climatology of trace gases from the Cape Grim overflights, 1992 - 1995, in Baseline Atmospheric Program (Australia) 1994-5, edited by R.J. Francey, A.L. Dick and N. Derek, pp 41 - 52,

^aSamples are collected within the range specified.

Bureau of Meteorology and CSIRO Division of Atmospheric Research, Melbourne, Australia, 1996.

Francey, R.J., L.P.Steele, R.L.Langenfelds, M.P.Lucarelli, C.E.Allison, D.J.Beardsmore, S.A.Coram, N.Derek, F.R.deSilva, D.M.Etheridge, P.J.Fraser, R.J.Henry, B.Turner, E.D.Welch, D.A.Spencer and L.N.Cooper. Global Atmospheric Sampling Laboratory (GASLAB): supporting and extending the Cape Grim trace gas programs. Baseline Atmospheric Program (Australia) 1993, edited by R.J.Francey, A.L.Dick and N.Derek, pp 8 - 29, Bureau of Meteorology and CSIRO Division of Atmospheric Research, Melbourne, Australia, 1996.

Steele, L.P., R.L.Langenfelds, M.P.Lucarelli, P.J.Fraser, L.N.Cooper, D.A.Spencer, S.Chea and K.Broadhurst. Atmospheric methane, carbon dioxide, carbon monoxide, hydrogen and nitrous oxide from Cape Grim flask air samples analysed by gas chromatography. Baseline Atmospheric Program (Australia) 1994-95, edited by R.J.Francey, A.L.Dick and N.Derek, pp 107 - 110, Bureau of Meteorology and CSIRO Division of Atmospheric Research, Melbourne, Australia, 1996.

Meteorological Service of Canada (MSC), Canada

Worthy, D.E.J., I. Levin, N.B.A. Trivett, A.J. Kuhlmann, J.F. Hopper, and M.K. Ernst, "Seven years of continuous methane observations at a remote boreal site in Ontario, Canada." Journal of Geophysical Research, Vol. 103, No. D13, p. 15995-16007, July, 1998.

Worthy, D. E. J., N. B. A. Trivett, J.F. Hopper, J. W. Bottenheim, and I. Levin, Analysis of long range transport events at Alert, N.W.T., during the Polar Sunrise Experiment, J. Geophys. Res., 99, 25329-25344, 1994.

National Agency for New Technology, Energy, and Environment (ENEA), Italy

Ciattaglia L., Guerrini A., Colombo T., Santaguida R., Chamard P., Behaviour of the atmospheric CO₂ and methane concentration in 2 Italian Stations different type of biosphere: Mt. Cimone and Lampedusa, IUGG-IAMAS-MJS6, Boulder, USA, 1995.

Chamard, P., L. Ciattaglia, F. Monteleone, and A. di Sarra, The station for climate observations at Lampedusa: greenhouse gas measurements, Proceedings of the VI CO₂ Expert Meeting, WMO, in press, 2001.

National Institute for Environmental Studies (NIES), Japan

Y. Tohjima, T. Machida, M. Utiyama, M. Katsumoto, Y. Fujinuma, and S. Maksyutov, Analysis and presentation of in situ atmospheric methane measurements from Cape Ochiishi and Hateruma Island, J. Geophys. Res., In Press, 2001.

National Institute of Water and Atmospheric Research (NIWA), New Zealand

Lowe, D.C., Manning, M.R., Brailsford, G.W., Bromley, A.M., The 1991-1992 Atmospheric Methane anomaly: Southern Hemisphere 13C decrease and growth rate fluctuations, Geophys. Res Lett, 24, 8, 857-860, 1997.

South African Weather Service (SAWS), South Africa

Brunke E-G. and Allen R. J. (1988), Tropospheric background measurements of CFCl₃, CH₃CCl₃ and CCl₄ at Cape Point, South Africa, and their long-term trends. South African Journal of Science 84, 4, 266-270.

Brunke E-G., Scheel H.E. and Seiler W. (1990), Trends of tropospheric CO, N₂O and CH₄ as observed at Cape Point, South Africa. Atmospheric Environment 24A, 3, 585-595.

Brunke, E.G., H.E. Scheel, and W. Seiler (1994), Atmospheric CH₄ record from in situ measurements at Cape Point. pp. 352-356. In T.A. Boden, D.P. Kaiser, R.J. Sepanski, and F.W. Stoss (eds.). *Trends'93: A compendium of Data on Global Change*. ORNL/CDIAC-65. Carbon Dioxide Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tenn., U.S.A.

Brunke, E-G. and Scheel, H.E. (1995), The new Cape Point baseline station and recent changes in trace gas trends, Extended Abstracts of papers presented at the WMO-IGAC Conference on the Measurement and Assessment of Atmospheric Composition Change, Beijing, China, 9-14 October 1995, WMO Report No. 197, WMO/TD-NO. 710, 246-249.

Scheel H.E., Brunke E-G. and Seiler W. (1990), Trace gas measurements at the Monitoring Station Cape Point, South Africa, between 1978 and 1988. Journal of Atmospheric Chemistry 11, 3, 197-210.

Seiler, W., Giehl, H., Brunke E-G. and Halliday, E. (1984), The seasonality of CO abundance in the Southern Hemisphere. Tellus 36B, 219-31.

NOAA/Climate Monitoring and Diagnostics Laboratory (CMDL), United States - Flask measurements

Dlugokencky, E.J., K.A. Masarie, P.M. Lang, and P.P. Tans, "Continuing decline in the growth rate of atmospheric methane.", Nature, 393:447-450, 1997.

Dlugokencky, E.J., L.P. Steele, P.M. Lang, K.A. Masarie, and R.C. Martin. "The Growth Rate and Distribution of Atmospheric Methane." Journal of Geophysical Research, Vol. 99, No. D8, p. 17021-17043. August, 1994.

Steele, L.P., P.J. Fraser, R.A. Rasmussen, M.A.K. Khalil, T.J. Conway, A.J. Crawford, R.H. Gammon, K.A. Masarie, and K.W. Thoning, "The Global Distribution of Methane in the Troposphere." Journal of Atmospheric Chemistry, Vol. 5, No. 2, p. 125-171, June 1987.

NOAA/Climate Monitoring and Diagnostics Laboratory (CMDL), United States - In situ measurements

Dlugokencky, E.J., L.P. Steele, P.M. Lang, and K.A. Masarie. "Atmospheric Methane at Mauna Loa and Barrow observatories: Presentation and Analysis of in situ measurements." Journal of Geophysical Research, Vol. 100, No. D11, p. 23103-23113, November 1995.

NOAA/Climate Monitoring and Diagnostics Laboratory (CMDL), United States - Tall-tower measurements

Hurst, D.F., P.S. Bakwin, and J.W. Elkins, "Recent trends in the variability of halogenated trace gases over the United States." Journal of Geophysical Research, Vol. 103, No. D19, p. 25299-25306, 1998.

Hurst, D.F., P.S. Bakwin, R.C. Myers, and J.W. Elkins, "Behavior of trace gas mixing ratios on a very tall tower in North Carolina." Journal of Geophysical Research, Vol. 102, No. D7, p. 8825-8835, 1997.

Bakwin, P.S., D.F. Hurst, P.P. Tans, and J.W. Elkins, "Anthropogenic sources of halocarbons, sulfur hexafluoride, carbon monoxide, and methane in the southeastern United States." Journal of Geophysical Research, Vol. 102, No. D13, p. 15915-15925, 1997.

Hurst, D.F., P.S. Bakwin, C. Zhao, K.J. Davis, and R.M. Teclaw, "Landscape-scale surface fluxes of methane and hydrogen in a North American boreal lowland and wetland forest." Eos Trans. A.G.U., F124-125, 1996.

NOAA/Climate Monitoring and Diagnostics Laboratory (CMDL), United States - Aircraft measurements

Bakwin, P.S., Conway, T.J., Dlugokencky, E.J., Guenther, D.W., Kitzis, D, Lang, P.M., Masarie, K.A., Novelli, P.C., Thoning, K.W., Tans, P.P., and Waterman, L.S., in Climate Monitoring and Diagnostics Laboratory CMDL NO. 22 Summary Report 1994, edited by J.T. Peterson and R.M. Rosson, pp 18-30, US Department of Commerce, NOAA, Boulder, Colorado, 1994.

APPENDIX A. RELEASE NOTES

Please Note: Improvements to the data extension procedure described below are in the context of GLOBALVIEW-CO₂. Efforts to stabilize the extended records for GLOBALVIEW-CO₂, equally improve the stability of extended records for GLOBALVIEW-CH₄.

A.2001 Additions to GLOBALVIEW-CH₄

Continuous surface measurements:

ALT Alert, Nunavut, Canada (MSC)

COI Cape Ochi-ishi, Japan (NIES)

HAT Hateruma Island, Japan (NIES)

Continuous measurements from tall towers:

LEF Park Falls, Wisconsin, United States (CMDL)

Discrete surface measurements:

KZD Sary Taukum, Kazakstan (CMDL)

KZM Plateau Assy, Kazakstan (CMDL)

TDF Tierra Del Fuego, Argentina (CMDL)

Discrete measurements from aircraft:

HAA Molokai Island, Hawaii, United States (CMDL)

PKA Poker Flats, Alaska, United States (CMDL)

See Section 9 (SAMPLING LOCATIONS) for details.

A.2000 Modifications to the Data Extension procedure

The data extension approach used to prepare the GLOBALVIEW product extends measurement time series by filling periods of missing data for a specific site with values based on knowledge gained from measurements at the site itself and from measurements from marine boundary layer (MBL) sites at comparable latitude. This "latitude reference" method has been improved upon over that described in *Masarie and Tans*, [1995] (hereafter MT95).

In GLOBALVIEW-CO₂, 1999 we improved the technique used to construct reference MBL time series to reduce their sensitivity to changes in the distribution of sites and to minimize discontinuities in these reference curves resulting from periods of sporadic or interrupted sampling with existing MBL records. In GLOBALVIEW-CO₂, 2000, we have made a minor change to the construction of the difference climatology to minimize discontinuities between smooth values and interpolated and extrapolated values.

A.2000.1 Summary of the difference climatology described by MT95

Data were prepared by fitting a function, f(t) [Equation 1 in MT95 consisting of harmonics and a polynomial] to each measurement record. The residuals from this fit are smoothed to capture interannual variations in the seasonal cycle. These variations are added to f(t) to produce a smooth curve, $S_{STA}(t)$ [Equation 2, MT95], which is our best fit representation of the data. The reference MBL time series, $MBL_{STA}(t)$, is constructed for the latitude of each sampling location using the methods described by MT95 and modified according to A.1999.2 (see below). The difference distribution, $_{STA,REF}(t)=S_{STA}(t)-MBL_{STA}(t)$, highlights features that distinguish the individual record from the reference. A difference climatology was then described by fitting a function, $d_{STA,REF}(t)$ [Equation 9, MT95] to $_{STA,REF}(t)$. This difference climatology describes the average difference between the smooth curve, $S_{STA}(t)$, and the reference $MBL_{STA}(t)$. To account for interannual variability in the difference distribution, $_{STA,REF}(t)$, we digitally filter the residuals, $_{STA,REF}(t)-d_{STA,REF}(t)$ using a low-pass filter with FWHM of 40 days. The smoothed residuals are then combined with the difference climatology according to

Data extension relies on the assumption that the difference climatology described by $d_{STA,REF}(t)$ is valid for periods when there are no actual measurements. Limitations of the assumption are discussed in Sections 4 and 5 of MT95. Finally, the extended record is constructed using $S_{STA}(t)$ where measurements exist and by combining $MBL_{STA}(t)$ and the difference climatology where measurements do not exist. Specifically, interpolated values are constructed by combining the MBL reference, $MBL_{STA}(t)$, with the smoothed difference climatology, $S_{STA,REF}(t)$. Extrapolated values are constructed by combining the MBL reference, $MBL_{STA}(t)$, with the difference climatology, $d_{STA,REF}(t)$.

Equation 10, MT95 to produce a smoothed difference climatology, S_{STA,REF}(t).

A.2000.2. Modifications to the use of the difference climatology

The difference climatology, d_{STA,REF}(t), is computed from the difference distribution, _{STA,REF}(t), as described by MT95 and summarized above. The method described by MT95 to construct *extrapolated* values, however, had a tendency to introduce discontinuities at the transition between smoothed values, S(t), and extrapolated values

(Figure 1b). These discontinuities arise when extrapolated values based on average behavior join values derived from observations, which do not reflect average behavior. The largest discontinuities occur when the seasonal pattern of actual data at a transition deviates significantly from the long-term average seasonal cycle (Figure 1a). To minimize discontinuities at the boundary between extrapolated values and smooth values, we smooth the transitions between the difference climatology, d_{STA,REF}(t), and the difference distribution, _{STA,REF}(t). This is accomplished by defining a relaxation period (RELAX=8 weeks) whereby we force the difference climatology to "relax" linearly from its value RELAX weeks away to the first value from the difference distribution following a gap or to the last value from a difference distribution before a gap in the actual data begins.

Extrapolated values are required to "fill" external gaps in the observations that occur when a data record begins or ends within the data extension synchronization period. For example, since the CMDL [lab# 00] flask sampling effort on container ships in the Pacific Ocean (POC) began in 1987 and the synchronization period for GLOBALVIEW-CO₂, 2000 is 1979 through 1999, there exists an external gap at the beginning of the POC extended record. The transition between $d_{POCN30,REF}(t_i)$ and $d_{POCN30,REF}(t_i)$ where $d_{POCN30,REF}(t_i)$ where $d_{POCN30,REF}(t_i)$ are used (as in MT95) for time steps before $d_{POCN30,REF}(t_i)$ and $d_{POCN30,REF}(t_i)$ are used (as in MT95) for time steps before $d_{POCN30,REF}(t_i)$ and $d_{POCN30,REF}(t_i)$. Figure 1c illustrates this technique.

The method to construct *interpolated* values (described by MT95) did not introduce discontinuities at transitions. By using the smoothed difference climatology, $S_{STA,REF}(t)$, continuity was imposed at the transition between $S_{STA,REF}(t)$ and $_{STA,REF}(t)$ by the curve fitting methods as described by Thoning et al. [1989]. A more defensible approach for the extension of data records is to use only the difference climatology, $d_{STA,REF}(t)$, which describes the average difference between all actual observations and the MBL reference. Thus, we now apply the smoothing strategy described above to the construction of interpolated values.

Interpolated values are required to "fill" internal gaps in a data record that occur when an interruption in the observations exceeds 8 weeks (as described in MT95). There are two cases to consider, which again, can be best illustrated using the CMDL POCN30 record. First, there are internal gaps in the POCN30 record that exceed 8 weeks but are less than

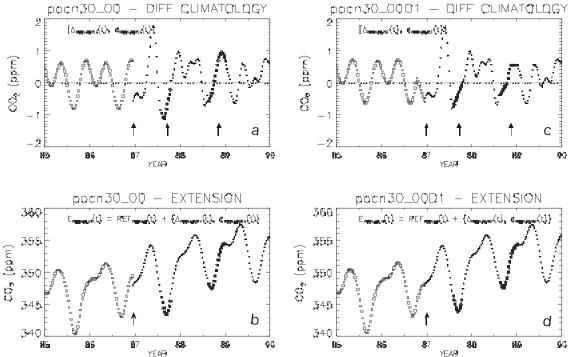


Figure 1. (a) Portion of the POCN30 difference climatology (squares) derived using the method described by MT95. (b) POCN30 extended record derived from (a). (c) Portion of POCN30 difference climatology derived using the modified method described in the text. (d) POCN30 extended record derived from (b) showing minimal discontinuity at the transition between extrapolated values (squares) and smoothed values (circles).

2 RELAX weeks (e.g., 1987). In these cases, we linear interpolate between $_{POCN30,REF}(t_i)$ and $_{POCN30,REF}(t_{ii})$ where t_i corresponds to the weekly time step before the gap in the record begins and t_{ii} is the weekly time step when the observations restart. Second, there are internal gaps exceeding 2 RELAX weeks in length (e.g., 1988). In these cases, we linear interpolate between $_{POCN30,REF}(t_i)$ and $d_{POCN30,REF}(t_{ii}+RELAX)$ and $d_{POCN30,REF}(t_{ii}-RELAX)$ and $d_{POCN30,REF}(t_{ii}-RELAX)$, we use the values $d_{POCN30,REF}(t_i+RELAX)$. Figure 1c illustrates each of these cases.

Discontinuities in extended records caused by jumps at transitions between the difference climatology and the difference distribution are artifacts of the data extension method and do not reflect instantaneous sources and sinks of carbon. It is reasonable then to minimize these discontinuities since models "inverting" GLOBALVIEW-CO₂ will be required to interpret these jumps. To smooth these discontinuities, we assume that the transition to the actual difference distribution will be gradual and not instantaneous.

Because we cannot justify using one model over another, we have chosen linear interpolation.

By smoothing the transition between the difference climatology and the difference distribution at external and internal gaps, we have minimized discontinuities caused by the non-average behavior of actual observations (Figure 1d). This improvement is apparent in the extended records included in this data product. These modifications, however, still cannot overcome certain discontinuities in the extended records caused by limitations in the observational network itself (see discussion in A.1999.2).

A.1999 Modifications to the Data Extension procedure

The data extension approach used to prepare the GLOBALVIEW product extends measurement time series by filling periods of missing data for a specific site with values based on knowledge gained from measurements at the site itself and from measurements from marine boundary layer (MBL) sites at comparable latitude. This "latitude reference" method has been improved upon over that described in *Masarie and Tans*, [1995] (hereafter MT95). Specifically, the technique used to construct reference MBL time series has been modified to reduce their sensitivity to changes in the distribution of sites and to minimize discontinuities in these reference curves resulting from periods of sporadic or interrupted sampling within existing MBL records.

A.1999.1 Summary of latitude reference method described by MT95

Data were prepared by fitting a function, f(t) [Equation 1 in MT95 consisting of harmonics and a polynomial] to each measurement record. The residuals from this fit are smoothed to capture interannual variations in the seasonal cycle. These variations are added to f(t) to produce a smooth curve, S(t) [Equation 2, MT95], which is our best fit representation of the data. The residuals are also smoothed to capture variations in the long-term trend only and these are added to the polynomial terms of f(t) to give the deseasonalized long-term trend, T(t) [Equation 3, MT95]. A detrended seasonal cycle is computed as S(t)-T(t), and the average seasonal cycle, H(t), is represented by the harmonic components of f(t) [see Equation 1].

A single measurement record extended using the latitude reference method (as described in Section 4.2, MT95) utilized the record itself as well as information gleaned from additional measurements available from the observational network. Fundamental to this approach is the difference climatology that characterizes the uniqueness of a site record relative to a MBL reference calculated at the site's latitude. Differences between the smooth curve, $S_{STA}(t)$, and the MBL reference, $MBL_{STA}(t)$ are calculated (Equation 8, MT95). This distribution, $S_{STA,REF}(t)$, highlights features in the site record that are not represented by the MBL reference. A curve [Equation 9, MT95] is then fitted to this

distribution to characterize the average offset and average seasonal cycle of $_{STA,REF}(t)$ and represents the difference climatology for the site. We then assume the difference climatology is valid for periods where there are no measurements; limitations of this assumption are discussed in Sections 4 and 5 of MT95. Finally, the extended record is constructed using $S_{STA}(t)$ where measurements exist and by combining $MBL_{STA}(t)$ and the difference climatology where measurements do not exist.

A.1999.2. Modifications to the derivation of the MBL reference

Reference MBL time series continue to be constructed using observations from active MBL sampling sites during the synchronization period (fixed span of time into which measurement records will be extended, e.g., 1979-1998). The method described in MT95, however, had a tendency to introduce discontinuities into the derived reference time series that were due to changes in the distribution of MBL measurements. For example, during construction of reference MBL time series, each MBL measurement record contributed its smooth values, S(t), everywhere measurements existed; no values from the site were contributed if an interruption in the observations exceeded 8 weeks. Further, the smooth curve was not defined before sampling at a location begins or after it ends. Thus, during construction of reference MBL time series, values from the smooth curves from MBL sites would abruptly appear, disappear, and reappear depending on the continuity and distribution of actual MBL measurements. This was particularly a problem in the equatorial and southern tropical regions where sampling is already sparse. In these regions, site additions, deletions, or gaps in the few existing MBL records had considerable impact on the reference MBL time series and added noise to existing variability due to changes in carbon exchange and atmospheric circulation.

Modifications to the latitude reference procedure minimize the affects of a changing observational network on the derived reference MBL time series. This is accomplished in two ways. First, instead of using the smooth curve, S(t), from MBL measurement records as described by MT95, we use the long-term trend, T(t), the detrended seasonal cycle, S(t)-T(t), and the average seasonal cycle, H(t) derived from each MBL measurement record. Because the trend curve is, by definition, less sensitive than the smooth curve to short-term interruptions, we utilize interpolated values from the trend curve during problematic sampling periods. The seasonal component of the measurement record is represented by the detrended seasonal cycle where there are measurements and by the average seasonal cycle where there are short-term interruptions in the record. By using average seasonal cycle patterns, interruptions or periods of infrequent sampling in a MBL record where the seasonal cycle may be poorly defined or entirely missing have minimal impact on the derived MBL reference. Second, instead of using weights (which depend on sampling density and measurement variability) with annual resolution as described, we now use a single weight at each site that is determined using the entire measurement record. This eliminates variability in the MBL reference that arises when

assigned weights may change abruptly from one year to the next, again, due to changes in the observational network. Considered together, these modifications to the latitude reference procedure ensure that once measurements at a MBL location commence, they contribute uninterrupted to the construction of the reference MBL time series until sampling is discontinued. This point is clarified in the description that follows.

First, weekly latitudinal distributions (mixing ratio versus latitude) of values extracted from the long-term trends, T(t), at MBL sites are compiled. A weighted curve as described by *Tans et al.* [JGR, Vol. 94, p. 5151-5172, 1989] is then fitted to each weekly distribution to approximate the meridional distribution of trends. At each time step, values are extracted from the curve at intervals of 0.05 sine of latitude from 90°S to 90°N producing a matrix (T(t,l)) of trends as a function of time and latitude.

Second, using the same MBL sites, weekly latitudinal distributions of values extracted from the detrended seasonal cycle where measurements exist and from the average seasonal cycle where there are interruptions in the data record are compiled. A weighted curve is then fitted to each weekly distribution to approximate the meridional distribution of seasonal cycle patterns. At each time step, values are extracted from the curve at intervals of 0.05 sine latitude from 90°S to 90°N producing a matrix [S(t,l)-T(t,l); H(t,l)] of detrended seasonal cycle patterns as a function of time and latitude.

Third, we construct the MBL matrix REF(t,l) = $T(t,l) + \{S(t,l)-T(t,l); H(t,l)\}$. This matrix contains derived model fits to the latitude distribution of long-term trends and detrended average or actual seasonal cycles from all MBL sites at each time step and latitude interval.

Finally, a reference MBL time series can be extracted from the MBL matrix at any latitude using linear interpolation. For example, as described in Section 4.2 of MT95, a reference MBL time series is constructed at Cape Grim (CGO), REF_{CGO}(t), by extracting, at each time step, a mixing ratio from the MBL matrix at the sine (latitude) of CGO. The MBL reference at CGO is most influenced by CGO itself (because it is designated as a MBL site) during the period of measurements, by MBL sites nearby in latitude to CGO, and to a lesser extent by all other MBL values used in the curve fits. The MBL reference at CGO is included in the CGO extension file. Reference MBL time series are included in data extension files for all MBL and non-MBL sampling locations. The reference MBL matrix is also included in this GLOBALVIEW product (See Section 4.6 (REFERENCE MARINE BOUNDARY LAYER MATRIX) of this document for details).

The reference MBL time series constructed using this technique are considerably smoother and more stable than those generated using the original technique. This new technique, however, still cannot overcome certain limitations in the observational network itself. For example, in late-1990, the NOAA sampling at AMS (38°S) was terminated.

NOAA sample collection began at CRZ (46° S) in early-1991 as a replacement to the AMS location. The 4-month gap in MBL measurements in this latitude region, however, results in a discontinuous period of low CO_2 values in the reference MBL time series at CGO (41° S) that is bracketed in latitude by CRZ to the south and AMS to the north. This discontinuity in the MBL reference at the latitude of CGO is substantially attenuated in GLOBALVIEW- CO_2 where continuous measurements at AMS [1980-1997] contributed by the LSCE laboratory in France provide the continuity that was lacking in the NOAA sampling network.

APPENDIX B. TABLE: GLOBALVIEW-CH₄ SAMPLING LOCATIONS

Summary of information provided in Sections 2 (PARTICIPANTS) and 9 (SAMPLING LOCATIONS). This table is also available as a text file (gv_table.ch4)

Site/lab code	latitude	longitude	Elev., m ^a	MBL ^b	Measurement Laboratory
aia005_02D2	-40.53	144.30	500°	0	CSIRO
aia015_02D2	-40.53	144.30	1500 ^c	0	CSIRO
aia025_02D2	-40.53	144.30	2500^{c}	0	CSIRO
aia035_02D2	-40.53	144.30	3500^{c}	0	CSIRO
aia045_02D2	-40.53	144.30	4500°	0	CSIRO
aia055_02D2	-40.53	144.30	5500 ^c	0	CSIRO
aia065_02D2	-40.53	144.30	6500°	0	CSIRO
alt_00D0	82.45	-62.52	210	1	CMDL
alt_02D0	82.45	-62.52	210	1	CSIRO
alt_06C0	82.45	-62.52	210	1	MSC
ams_00D0	-37.95	77.53	150	1	CMDL
asc_00D0	-7.92	-14.42	54	1	CMDL
ask_00D0	23.18	5.42	2728	0	CMDL
avi_00D0	17.75	-64.75	3	1	CMDL
azr_00D0	38.75	-27.08	30	1	CMDL
bal_00D0	55.50	16.67	7	0	CMDL
bhd_15D0	-41.41	174.87	80	1	NIWA
bme_00D0	32.37	-64.65	30	1	CMDL
bmw_00D0	32.27	-64.88	30	1	CMDL
brw_00D0	71.32	-156.60	11	1	CMDL
brw_00C0	71.32	-156.60	11	1	CMDL
bsc_00D0	44.17	28.68	3	0	CMDL
car030_00D2	40.90	-104.80	3000^{c}	0	CMDL
car040_00D2	40.90	-104.80	4000 ^c	0	CMDL
car050_00D2	40.90	-104.80	5000°	0	CMDL

car060_00D2	40.90	-104.80	6000^{c}	0	CMDL
car070_00D2	40.90	-104.80	7000^{c}	0	CMDL
car080_00D2	40.90	-104.80	8000^{c}	0	CMDL
cba_00D0	55.20	-162.72	25	1	CMDL
cfa_02D0	-19.28	147.06	2	0	CSIRO
cgo_00D0	-40.68	144.68	94	1	CMDL
cgo_02D0	-40.68	144.68	94	1	CSIRO
chr_00D0	1.70	-157.17	3	1	CMDL
cmo_00D0	45.48	-123.97	30	0	CMDL
coi_20C0	43.15	145.50	100	0	NIES
cpt_36C0	-34.35	18.49	260	0	SAWS
cri_02D0	15.08	73.83	60	0	CSIRO
crz_00D0	-46.45	51.85	120	1	CMDL
daa_02D0	-12.42	130.57	3	0	CSIRO
eic_00D0	-29.15	-109.43	50	0	CMDL
esp_02D0	49.38	-126.55	39	1	CSIRO
frd_06C0	49.88	-81.57	250	0	MSC
gmi_00D0	13.43	144.78	2	1	CMDL
goz_00D0	36.05	14.18	30	0	CMDL
haa005_00D2	21.23	-158.95	500°	0	CMDL
haa015_00D2	21.23	-158.95	1500°	0	CMDL
haa025_00D2	21.23	-158.95	2500^{c}	0	CMDL
haa035_00D2	21.23	-158.95	3500^{c}	0	CMDL
haa045_00D2	21.23	-158.95	4500°	0	CMDL
haa055_00D2	21.23	-158.95	5500°	0	CMDL
haa065_00D2	21.23	-158.95	6500°	0	CMDL
haa075_00D2	21.23	-158.95	7500°	0	CMDL
hat_20C0	24.05	123.80	47	0	NIES
hba_00D0	-75.67	-25.50	10	1	CMDL
hun_00D0	46.95	16.65	344	0	CMDL
ice_00D0	63.25	-20.15	100	1	CMDL
itn_00D0	35.35	-77.38	505	0	CMDL
itn051_00C3	35.35	-77.38	60	0	CMDL
itn123_00C3	35.35	-77.38	132	0	CMDL
itn496_00C3	35.35	-77.38	505	0	CMDL
izo_00D0	28.30	-16.48	2367	0	CMDL
key_00D0	25.67	-80.20	3	1	CMDL
kum_00D0	19.52	-154.82	3	1	CMDL
kzd_00D0	44.45	77.57	412	0	CMDL
kzm_00D0	43.25	77.88	2519	0	CMDL
lef_00D0	45.93	-90.27	868	0	CMDL
lef030_00C3	45.93	-90.27	502	0	CMDL

lef076_00C3	45.93	-90.27	548	0	CMDL
lef396_00C3	45.93	-90.27	868	0	CMDL
lmp_28D0	35.52	12.62	85	0	ENEA
maa_02D0	-67.62	62.87	32	1	CSIRO
mbc_00D0	76.25	-119.35	58	1	CMDL
mhd_00D0	53.33	-9.90	25	1	CMDL
mid_00D0	28.22	-177.37	4	1	CMDL
mlo_00D0	19.53	-155.58	3397	0	CMDL
mlo_00C0	19.53	-155.58	3397	0	CMDL
mlo_02D0	19.53	-155.58	3397	0	CSIRO
mqa_02D0	-54.48	158.97	12	1	CSIRO
nwr_00D0	40.05	-105.58	3475	0	CMDL
pfa025_00D2	65.07	-147.29	2500 ^c	0	CMDL
pfa035_00D2	65.07	-147.29	3500^{c}	0	CMDL
pfa045_00D2	65.07	-147.29	4500 ^c	0	CMDL
pfa055_00D2	65.07	-147.29	5500 ^c	0	CMDL
pfa065_00D2	65.07	-147.29	6500 ^c	0	CMDL
pfa075_00D2	65.07	-147.29	7500 ^c	0	CMDL
pocs35_00D1	-35.00^{c}	172.00^{c}	10	1	CMDL
pocs30_00D1	-30.00^{c}	-176.00 ^c	10	1	CMDL
pocs25_00D1	-25.00^{c}	-171.00 ^c	10	1	CMDL
pocs20_00D1	-20.00^{c}	-174.00^{c}	10	1	CMDL
pocs15_00D1	-15.00^{c}	-171.00 ^c	10	1	CMDL
pocs10_00D1	-10.00^{c}	-161.00 ^c	10	1	CMDL
pocs05_00D1	-5.00^{c}	-159.00 ^c	10	1	CMDL
poc000_00D1	0.00^{c}	-155.00 ^c	10	1	CMDL
pocn05_00D1	5.00^{c}	-151.00 ^c	10	1	CMDL
pocn10_00D1	10.00^{c}	-149.00^{c}	10	1	CMDL
pocn15_00D1	15.00^{c}	-145.00 ^c	10	1	CMDL
pocn20_00D1	20.00^{c}	-141.00 ^c	10	1	CMDL
pocn25_00D1	25.00^{c}	-139.00 ^c	10	1	CMDL
pocn30_00D1	30.00^{c}	-135.00°	10	1	CMDL
pocn35_00D1	35.00^{c}	-137.00 ^c	10	0	CMDL
pocn40_00D1	40.00^{c}	-136.00°	10	0	CMDL
pocn45_00D1	45.00^{c}	-131.00 ^c	10	0	CMDL
psa_00D0	-64.92	-64.00	10	1	CMDL
rpb_00D0	13.17	-59.43	3	1	CMDL
scsn03_00D1	3.00^{c}	105.00	15	0	CMDL
scsn06_00D1	6.00^{c}	107.00	15	0	CMDL
scsn09_00D1	9.00^{c}	109.00	15	0	CMDL
scsn12_00D1	12.00^{c}	111.00	15	0	CMDL
scsn15_00D1	15.00^{c}	113.00	15	0	CMDL

scsn18_00D1	18.00^{c}	115.00	15	0	CMDL
scsn21_00D1	21.00^{c}	117.00	15	0	CMDL
sey_00D0	-4.67	55.17	3	0	CMDL
shm_00D0	52.72	174.10	40	1	CMDL
sis_02D0	60.17	-1.17	30	1	CSIRO
smo_00D0	-14.25	-170.57	42	1	CMDL
spo_00D0	-89.98	-24.80	2810	1	CMDL
spo_02D0	-89.98	-24.80	2810	1	CSIRO
stm_00D0	66.00	2.00	7	1	CMDL
syo_00D0	-69.00	39.58	11	0	CMDL
tap_00D0	36.73	126.13	20	0	CMDL
tdf_00D0	-54.87	-68.48	20	0	CMDL
uta_00D0	39.90	-113.72	1320	0	CMDL
uum_00D0	44.45	111.10	914	0	CMDL
wis_00D0	31.13	34.88	400	0	CMDL
wlg_00D0	36.27	100.92	3810	0	CMDL
wlg_33C0	36.27	100.92	3810	0	CAMS
zep_00D0	78.90	11.88	474	1	CMDL
zug_39C0	47.42	10.98	2962	0	IFU

^aElevation in meters above mean sea level.

^bMarine boundary layer sites used in weekly latitude distributions (0 NO, i.e., not used in constructing reference MBL matrix, 1 YES). See *Masarie and Tans*, [1995].

^cApproximate position. Samples are collected in the range of positions specified in Section 9 (SAMPLING LOCATIONS).