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Characteristics of African Savanna Biomes for Determining Woody Cover 

This companion file contains the supplemental information provided with (Sankaran et 
al., 2005). 

Cite this data set as follows: 

Sankaran M., N. P. Hanan, and R. J. Scholes. 2007. Characteristics of African Savanna 
Biomes for Determining Woody Cover. Data set. Available on-line 
[http://www.daac.ornl.gov] from Oak Ridge National Laboratory Distributed Active 
Archive Center, Oak Ridge, Tennessee, U.S.A. 

Sankaran, M., N. P. Hanan, R. J. Scholes, et al. 2005. Determinants of woody cover in 
African savannas. NATURE 438 (7069): 846-849. 

 

Supplementary methods and results 

Details of soil analysis.  Soil samples were obtained from 166 sites and analyzed under 
standardized laboratory conditions for texture, total N and P and N mineralization potential.  
Soils were typically sampled at 4-5 evenly spaced points (~25m apart) along a randomly 
placed transect at each site.  At each point, soil samples (typically N=3, top 10 to 20cm) were 
collected a few feet apart from one another and bulked, yielding 4-5 replicates per site.  
Replicate samples were analyzed for soil C and N content by combustion with a LECO CHN 
analyzer (LECO Corp, St. Joseph, MI), and total soil P was determined by Inductively 
Coupled Plasma (ICP) spectrometry (Leman Labs, Hudson, MA) following acid digestion of 
soils with HNO3-HClO4.  To provide an index of N availability and turnover in soils, 
potential N mineralization rates were quantified following laboratory incubations of soils 
under anaerobic conditions1.  Five gram soil-samples were immersed in water-filled 
scintillation vials (1:4 w/v) for 7 days and then extracted with 25ml 2M KCl.  Extracts were 
analyzed for NH4-N and NO3-N using an ALPKEM rapid flow analyzer (Alpkem, 
Clackamas, OR).  An additional set of extractions were carried out on untreated 10g soil 
samples to determine initial amounts of inorganic N present.   Potential N mineralization 
rates (μg * g soil-1 * 7 days-1) were determined as the difference in inorganic N between 
incubated and control soils.  Finally, replicate soil samples from each site were pooled and 
soil texture determined on bulked soils using the Bouyoucos hydrometer method2.  Including 
other published and unpublished data, estimates for soil % sand, %clay, %N, total P and 
mineralization potential were available for 175, 279,152, 155 and 146 sites, respectively. 

Comparison of methods employed to estimate woody cover.  Our final data set 
encompassed measures of woody cover derived using different sampling methodologies, 
including estimates based on densiometers (N=397), summed canopy areas of individuals in 
plots (N = 308), Bitterlich method (N=103), line intercepts (N=25), visual estimates (N=13), 
aerial photos/ satellite images (N=5) and presence/absence of woody canopies above fixed 
points (N = 3).  A comparison of woody cover estimates based on the two most commonly 
employed methods in the dataset, densiometers and summed canopy areas (705 of 854 sites), 
indicate a close correspondence between the two (Fig S4; data are from 7 sites where both 
methods were employed to estimate woody cover and span a precipitation range from 409 to 
970mm MAP), suggesting that the methods are comparable.  Although data were not 
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available to allow for a direct comparison of the other methods, visual inspection of the data 
revealed no consistent bias in woody cover estimates derived using any of the other methods.  
Further, our results remained qualitatively unchanged when the analysis was restricted to 
sites where cover was estimated using densiometers or by summing canopy areas, and hence, 
measurement methodologies do not appear to influence the results of our analysis.  We have, 
therefore, presented results based on the larger dataset in the main text. 

Analysis details for the piecewise linear model. The bent-cable form of the piecewise linear 
model allows the breakpoint between the pieces to be estimated and for a smooth, curved 
transition spanning the breakpoint that connects the two linear pieces.  The width of the 
quadratic nonlinear curve connecting the two linear slopes can be used to indicate how sharp 
or gradual the transition is between the different linear changes.  We examined changes in the 
loss function minimized by ‘quantreg’, checked that the proportion of residuals less than or 
equal to the estimate for a selected quantile τ ∈ {0.90, 0.99} was close to τ, and plotted 
estimated functions against the data to decide when ‘quantreg’ had converged to a good 
solution.  Different starting values for parameters and tolerance values often were required 
before ‘quantreg’ would iterate to a reasonable solution.   

We also used a b-spline approach to estimating piecewise linear quantile regression 
models3, 4, which provided additional support for the piecewise linear form of response 
change.  As this approach does not estimate an optimal break point (knots), we performed a 
manual search across an interval of values (MAP = 400 – 700 by increments of 25) suggested 
by the bent-cable form to find near optimal breakpoints.  Quadratic and cubic versions of b-
spline quantile regression models also were examined with up to 7 equally spaced 
breakpoints in MAP.  While these nonlinear models always fit slightly better than the linear 
b-splines, they confirmed that the major trends in the 0.90 – 0.99 quantiles of tree cover could 
be estimated with two linear pieces: a strong positive linear trend below MAP = 425 for 0.90 
– 0.98 quantiles and below MAP = 625 for 0.99 quantile, and a weak postive to nonzero trend 
above MAP = 425 - 625.  All of these piecewise linear splines had coefficients that differed 
from zero (P < 0.005). With the b-spline form of the piecewise linear model it was possible to 
add other variables to the model and test for their effect with quantile rankscore tests.  
Nonzero (P < 0.06) effects of fire-return intervals (0.18), %clay (-0.25), %sand (0.15), N 
mineralization potential (-0.12), and herbivore biomass (0.003) were present for lower to mid 
quantiles (0.10 – 0.60) of tree cover when these variables were added individually to the 
piecewise linear model of MAP.  None of these variables contributed (P > 0.10) to the 0.90 – 
0.99 quantiles.   

Details of linear quantile regression analysis.  For sites receiving less than 650 mm MAP, 
we used linear quantile regression analysis to further investigate how fire regimes, herbivory 
and soil properties influenced the upper bound on woody cover that was evident in these 
sites.  In all cases, 0.90 to 0.99 conditional quantiles were estimated using the modified 
version of the Barrodale and Roberts algorithm3, with confidence intervals estimated based 
on inversion of rank score tests5.   Sites for which fire return periods were reported as >x 
years were excluded from the analysis.  For soil %clay, separate analyses were carried out for 
sites where measurements were from the upper regions of the soil profile (typically top 10 – 
20 cm, N=131) and those from the top 100 cm (N=103).  Because results did not differ, data 
were pooled (N=234) for the graph in Figure 2.  

Regression tree analysis.  This technique creates binary trees by recursively partitioning 
data into two sets at each step based on an explanatory variable that minimizes a measure of 
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variation within the resultant subgroups6.  Regression trees are invariant to monotonic 
changes in explanatory variables, do not assume relations are linear or fixed across the entire 
dataset, are adept at capturing non-additive behavior, and are easy to interpret6.  Because 
partitions near the top of the regression tree reflect strong relationships between predictor and 
response variables while branches near the bottom of the tree are less precise6-7, trees were 
pruned back to a size that best represents relationships generalizable outside the sample to the 
rest of the continent6-7.  Tree size for pruning was determined based on 500, 10-fold cross-
validations7.   For each cross-validation, data were divided into 10 groups of similar size, 9 of 
which were used to create the tree while the remainder was used to determine the predictive 
accuracy for all possible tree sizes.  This procedure was repeated 10 times so that all groups 
were used as cross-validation groups and the entire process repeated 500 times.  The tree size 
which produced the lowest mean predictive error was chosen as the optimal size.   

Our data set included estimates of rainfall and fire frequency for 854 sites, whereas soil sand 
content and herbivore biomass estimates were available for only 175 and 183 sites, 
respectively.  Although regression trees are capable of handling missing data among predictor 
variables6-7, an analysis based on the complete dataset would nevertheless be unduly 
weighted toward the rainfall/ fire data.  For this reason, we have presented in the main text 
results from a regression tree analysis based on a subset of 161 sites for which all data on 
rainfall, fire return periods, soil sand content and herbivore biomass were available.  
However, the general conclusion of these results in terms of the primary importance of 
rainfall and fire in determining woody cover is unchanged by the inclusion of additional sites 
with missing data (Table S2).  Only rainfall and fire return periods were retained as 
significant predictor variables in the pruned tree for analyses based on either the complete 
dataset (N=854), sites for which at least 3 of the 4 predictor variables were available (N=197) 
or all sites for which data on sand content (N=175) were available.  For the analysis based on 
all sites for which herbivore biomass data were available (N=183), results were identical to 
those presented in Figure 3. 

The ‘rpart’ routine also provides information on surrogate splitting variables at each node, i.e. 
variables that best agree with the original splitting variable and which can be used to assign 
cases to different branches when data on the original variable are missing6-7.  For the tree 
shown in Fig. 4, sand content > 90.3% was identified as the surrogate criterion for the first 
split, reflecting the fact that drier sites in the dataset for the most part also tended to have high 
sand content.  However, because some high MAP sites (>356 mm) were also characterized by 
high sand content (as reflected in the third split in Fig 3), there was a 13% disagreement 
between the surrogate and original criterion in site allocation to nodes.  For split 2, sand 
content was again chosen as the surrogate variable, with sites having >13.9% sand assigned 
to the left branch (fire return < 10.5 yrs).  In this case, the disagreement between the surrogate 
and original variables was 15%.  No surrogates were identified for the third split.     
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Supplementary tables 

Table S1. Relationships between measures of soil properties for sites included 
in the regression tree analysis.  Values are correlation coefficients.  All 
correlations were significant at the α = 0.05 level.   

 %Clay %Sand %N Total P N mineralization 
potential 

%Clay 1.0     
%Sand -0.93 1.0    
%N 0.72 -0.73 1.0   
Total P 0.53 -0.59 0.54 1.0  
N mineralization 
potential 

0.4 -0.38 0.59 0.18 1.0 

 

Table S2. Results of regression tree analysis for different subsets of the 
dataset.   

Criterion for site inclusion N Variables retained in 
final tree 

Tree 
size 

R2

All sites 854 MAP, fire return period 8 nodes 41.0%
At least 3 of 4 predictors  197 MAP, fire return period 4 nodes 45.9%
Sand content data available 175 MAP, fire return period 4 nodes 45.6%
Herbivore biomass data 
available 

183 MAP, fire return period, 
sand content 

4 nodes 45.2%
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Supplementary Figure S1 

 

Figure S1.  Map of Africa showing the location of sample sites (indicated by crosses) 
used for the analysis.  Light gray areas represent fine-leaved, nutrient-rich savannas; 
darker areas are broad-leaved, nutrient-poor savannas.  The underlying map was 
derived from White’s vegetation map of Africa (ref. 30) by reclassifying woodland and 
wooded grassland map units into one or other of the two savanna classes according 
to the dominant tree species.  For display purposes, sites geographically close to 
one another have been jittered to facilitate discrimination of points. 
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Supplementary Figure S2 

 

0 200 400 600 800 1000 1200

0
20

40
60

80
10

0

Rainfall (mm)

T
re

e 
co

ve
r (

%
)

 

Figure S2. Woody cover as a function of MAP as related to the fire regimes of the 
different sites.  Filled circles represent savannas with low fire frequencies (average 
fire return times of > 3 yrs), and open circles represent sites with high fire 
frequencies (fire return intervals of <= 3 years).  Fires typically tend to be more 
frequent in sites with greater rainfall.  For sites receiving <650mm MAP, the upper 
bound on tree cover exists despite low fire frequencies (some of the sites had not 
burned for > 50 years).  Data are from 854 savanna sites across Africa. 
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Supplementary Figure S3 
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Figure S3.  Frequency distributions for a) soil %sand (N = 175), b) soil %N (N = 162), 
c) N mineralization potential (μg.g soil-1.7d-1; N = 146), d) soil total P (mg.kg-1; N = 
155), e) herbivore biomass density (kg.km-2; N = 183), and f) fire return periods (yrs; 
N = 854) across study sites. 
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Supplementary Figure S4 
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Figure S4.  Comparison of woody cover estimates based on densiometer and 
summed canopy area methods.  Data are from 7 sites where both methods were 
used to estimate woody cover and span a rainfall range from 409 – 970mm MAP.  Of 
the 854 sites in the complete dataset, the densitometer method was used at 397 
sites, while canopy areas were measured on belt transects or plots at 308 sites.  The 
solid line represents a freely fitted regression (y = 0.84x + 5.5; R2 = 0.93), while the 
dotted-line is for one that is constrained through the origin (y = 0.93x, R2 = 0.92).  
The intercept for the freely fitted relationship was not different from zero (P = 0.4).  In 
neither case was the slope of the regression line significantly different from 1.0 at the 
α=0.05 level.   


