
PHENOREGIONS FOR MONITORING VEGETATION 

RESPONSES TO CLIMATE CHANGE 

Summary: 

The overall purpose in this research was to identify the regions of the world best suited for long-

term monitoring of biospheric responses to climate change, i.e. monitoring land surface 

phenology. Using global 8- km 1982 to 1999 Normalized Difference Vegetation Index (NDVI) 

data and an eight-element monthly global 1961 to 1990 monthly climatology data, White et al. 

(2005) identified pixels consistently dominated by annual cycles and then created 500 

phenologically and climatically self-similar clusters, which they termed phenoregions. They 

ranked and screened each phenoregion as a function of landcover homogeneity and consistency, 

evidence of human impacts, and political diversity. The remaining 140 phenoregions represent 

areas with a minimized probability of human influence and non-climatic forcings and form 

elemental units for long-term phenological monitoring (Figure 1). Users should note that the 

number of screened phenoregions in this data set differ slightly from White et al. (2005). The 

provided archived phenoregions were screened with a slightly different algorithm. 

This data set contains both Binary image and ASCII grid data files and a corresponding .jpg 

mapfor the 500 elemental phenoregions, for the 140 recommended monitoring phenoregions, and 

for the 90 ranked clusters. Also included is an ASCII data table containing the descriptive data 

collected for each of the 500 elemental phenoregions and used for ranking and screening the 

phenoregions. A users can create their own phenoregion screening criteria using this descriptive 

information. 

 

Figure 1. The 140 phenoregions passing the screening factors in Table 1 and best suited for long-

term monitoring of climate change. 

Data Citation: 



Cite this data set as follows: 

White M. A., F. M. Hoffman, W. W. Hargrove, and R. R. Nemani. 2005. Phenoregions for 

Monitoring Vegetation Responses to Climate Change. Data set. Available on-line 

[http://www.daac.ornl.gov] from Oak Ridge National Laboratory Distributed Active Archive 

Center, Oak Ridge, Tennessee, U.S.A. doi:10.3334/ORNLDAAC/799. 
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1. Data Set Overview: 

Remote sensing of vegetation phenology is an important method with which to monitor 

terrestrial responses to climate change, but most approaches include signals from multiple 

forcings, such as mixed phenological signals from multiple biomes, urbanization, political 

changes, shifts in agricultural practices, and disturbances. Consequently, it is difficult to extract a 

clear signal from the usually assumed forcing: climate change. Here, using global 8-km 1982 to 

1999 Normalized Difference Vegetation Index (NDVI) data and an eight-element monthly 

climatology, we identified pixels whose wavelet power spectrum was consistently dominated by 

annual cycles and then created phenologically and climatically self-similar clusters, which we 

term phenoregions. We then ranked and screened each phenoregion as a function of landcover 

homogeneity and consistency, evidence of human impacts, and political diversity. Remaining 

phenoregions represented areas with a minimized probability of non-climatic forcings and form 

elemental units for long-term phenological monitoring. 

The investigators were White, M. A.; Hoffman, F.M.; Hargrove, W.W. and Nemani, R.R.  

2. Data Characteristics: 

Data File Creation and Description 

Elemental Phenoregions 

The initial step was to combine the 1982-1999 (not 1994) 10-day composite 8-km Pathfinder 

Advanced Very High Resolution Radiometer Land (PAL) Normalized Difference Vegetation 

Index (NDVI) with the eight-element global 1961 to 1990 10 minute monthly climatology data 

and apply a continuous wavelet transformation to identify pixels with a strong annual cycle 

which define self-similar climate clusters termed as phenoregions. An iterative k-means 
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clustering approach [Hargrove and Hoffman, 2005] was applied in the development of the 500 

elemental phenoregions. Ocean, interrupted space, and land areas not contained in a phenoregion 

have a value of zero. For all other areas, pixels in each phenoregion contain a unique integer 

value ranging from 1 to 500. Data are 16-bit signed integers in the global Interrupted Goodes 

Homolosine projection [DeFries et al., 1998] with projection information as given below.   

Binary Format File:  White_500_elemental_phenoregions.int 

Standard ASCII Grid Format File:  White_500_elemental_phenoregions.asc 

The companion file, White_500_elemental_phenoregions.jpg, displays these regions and is 

provided for reference. 

Ranked Phenoregions 

Second, the 500 elemental phenoregions were ranked and screened to produce 90 cluster 

rankings. These 90 cluster rankings were determined based on a suite of factors describing their 

appropriateness to act as climate-response monitoring units. Higher rankings indicate that the 

given phenoregion is better suited for climate response monitoring. Simply, the abundance of the 

dominant landcover and consistent information from a vegetation continuous fields product 

increased rankings whereas cropland, barren, or urban landcovers, evidence of human impacts, 

and political diversity reduced rankings. Rankings strategies are biome-specific; readers are 

referred to Table 1 below and White et al. (2005). Data are 16-bit signed integers in the global 

Interrupted Goodes Homolosine projection [DeFries et al., 1998] with projection information as 

given below.   

Binary Format File:  White_90_cluster_rankings.int 

Standard ASCII Grid Format File:  White_90_cluster_rankings.asc 

The companion file, White_90_cluster_rankings.jpg, displays these regions and is provided for 

reference. 

Screened Phenoregions 

The 500 elemental phenoregions were combined with the 90 cluster rankings, and the 0 values 

removed to form 140 final monitoring phenoregions. Data are 16-bit signed integers with 

projection information as given below.  

Binary Format File:  White_140_screened_phenoregions.int 

Standard ASCII Grid Format File:  White_140_screened_phenoregions.asc 

The companion file, White_140_screened_phenoregions.jpg, displays these ranked clusters 

and is provided for reference. 



Projection Information  

Both the binary integer files and the ASCII data files should be projected according to the 

following information: 

Projection_Name=interrupted_goode_homolosine  

Projection_Code=24  

Ellipsoid_Name=sphere  

Ellipsoid_Code=19  

Ellipsoid_Semi-Major_Axis=6370997.000  

Ellipsoid_Semi-Minor_Axis=6370997.000  

Upper_Left_Corner=-20016000, 8672000  

Upper_Right_Corner=20016000, 8672000  

Lower_Right_Corner=20016000, -8672000  

Lower_Left_Corner=-20016000, -8672000  

Geographic_Upper_Left_Corner=180d00'00.0000W,090d00'00.0000N;  

Geographic_Upper_Right_Corner=180d00'00.0000E,090d00'00.0000N;  

Geographic_Lower_Right_Corner=180d00'00.0000E,090d00'00.0000S;  

Geographic_Lower_Left_Corner=180d00'00.0000W,090d00'00.0000S;  

Number_Of_Lines=2168  

Pixels_Per_Line=5004  

Pixel_Resolution=8000,8000  

Pixel_Resolution_Units=meters  

Descriptive data collected for each of the 500 elemental phenoregions and used for ranking 

and screening the phenoregions. 

White_ancillary_phenoregion_data.txt.  



Users may desire to create their own screening/selection criteria with the descriptive information 

provided for each of the 500 elemental phenoregions. This tabular data may then be cross-

referenced to the 500 elemental phenoregions to develop unique criteria. Each line contains 

information for one of the clusters in White_500_elemental_phenoregions.int.  

Column 

Content Name  

Units Description 

Column 

cluster  

 dimensionless Can be used to cross reference cluster numbers in figure 1.  

Column 

npixels  

 dimensionless The number of pixels.  

Column 

dom_lc  

 categorical The dominant categorical landcover.  

1=evergreen needleleaf forest;  

2=evergreen broadleaf forest;  

3=deciduous needleleaf forest;  

4=deciduous broadleaf forest;  

5=mixed forest;  

6=woodland;  

7=wooded grassland;  

8=closed shrubland;  

9=open shrubland;  

10=grassland;  

11=crop;  

12=barren;  

13=urban.  

Column 

%dom_lc 

 percent The cover by the dominant categorical landcover.  

Column neglc  percent The cover by crop + urban + barren categorical landcovers.  

Column tree  percent The mean tree cover from the vegetation continuous fields product [Hansen et al., 2003].  

Note that for 34 clusters, nearest neighbor resampling did not produce land values from the vegetation 

continuous fields data. This occurred only in very sparse clusters (less than seven pixels) and had no 

impact on selection of the monitoring phenoregions. Also applies to herb and bare columns. For these 

situations, a fill value of -999 is used.  



Column herb  percent The mean herbaceous cover from the vegetation continuous fields product [Hansen et al., 

2003].  

Column bare  percent The mean bare cover from the vegetation continuous fields product [Hansen et al., 2003].  

Column hfoot  dimensionless The mean human footprint [Sanderson et al., 2002]. Evidence of human impacts ranges 

from 0 (lowest) to 100 (highest).  

Column 

poldiv 

 dimensionless The political diversity based on a Simpson's diversity index [Simpson, 1949] and gridded 

country information [CIESIN, 2000]. Ranges from 0 (phenoregion occupied by only one 

country) to 100 (infinite diversity).  

Column prec  mm The annual average total precipitation [New et al., 2002].  

Column tavg  deg C The annual average temperature [New et al., 2002].  

Example Data Records 

  

cluster npixels dom_lc %dom_lc neglc tree herb bare 

hfoot poldiv prec tavg 

1 3646 13 65 65 25 70 5 1 1 720 -5.4 

2 2073 1 76 11 26 60 15 12 0 448 5.0 

3 2465 1 46 4 43 56 1 29 56 1189 9.3 

4 1 13 100 100 -999 -999 -999 7 0 408 -6.9 

5 5771 10 82 9 0 24 76 12 62 213 6.8 

... 

495 4895 10 34 30 13 69 19 12 63 409 -4.9 

496 152 1 47 1 44 56 0 11 18 1588 5.5 

497 1 13 100 100 -999 -999 -999 5 0 516 -8.7 

498 315 13 72 98 3 19 81 4 18 388 -8.6 

499 3940 3 71 0 47 51 2 4 0 402 -7.8 

500 1344 4 49 16 19 79 2 4 6 648 -2.4 

  

The header line can be read as 12A8; the data lines are 11I8,F8.1. 

Site boundaries: (All latitude and longitude given in degrees and fractions)  

Site (Region) Westernmost 

Longitude 

Easternmost 

Longitude 

Northernmost 

Latitude 

Southernmost 

Latitude 

Geodetic 

Datum 

Global (gridded)  -180 180 90 -90  

Time period:  

The data set covers the period 1982/01/01 to 1999/12/31. (1994 not used because of sensor 

failure) 

3. Data Application and Derivation: 



Vegetation phenology, the study of the timing of recurring vegetation cycles such as canopy 

emergence and senescence, is an emerging field of climate change science. Yet many ground-

based and modeling studies are biased towards biomes (deciduous broadleaf forest) and regions 

(western Europe) that, from a global perspective, are nearly irrelevant. Additionally, in remote 

sensing studies focusing on global patterns, observed trends are subject to multiple and often 

unknown non-climatic forcings and technical problems. 

In spite of these difficulties, there is a clear need for continued phenological monitoring. 

Observational modeling and remote sensing evidence suggests that vegetation phenology is 

changing in response to warming climates, principally through an earlier start of season (SOS) 

and later end of season (EOS). Through these types of studies, vegetation phenology can be used 

as a sensitive barometer of terrestrial responses to short- and long-term climate variability. 

Climate change usually is assumed to be the primary forcing of trends or turning points in SOS 

and/or EOS timeseries; while this may be true in many cases, especially when analyzed over 

large regions, a variety of factors may influence observed trends. Nonclimatic forcings of 

observed shifts in vegetation phenology include urbanization, the collapse of political systems, 

and disturbances. Further, while independent lines of evidence tend to show similar overall 

trends, geographically coincident data are often weakly correlated, complicating attempts to 

extract a clear vegetative signal from potentially confounding factors (variation in soil wetness, 

trends in snow cover, degradation of remote sensing platforms, variable within-pixel 

phenological trends). 

In response to the need for a monitoring strategy that targets climate change impacts and 

provides geographical units for trend attribution and fine resolution remote sensing studies, we 

propose the use of a limited number of phenologically and climatically self-similar clusters. 

There are four central features of our proposed strategy: (1) identification of pixels with a strong 

annual cycle; (2) creation of clusters with similar vegetation phenology and climate; (3) removal 

of clusters dominated by human-related landcover; (4) selection of remaining clusters with 

homogeneous landcover, low evidence of human impacts, and low diversity of political units. 

This approach, which identifies clusters of pixels with an easily identifiable seasonal signal, is 

designed to maximize the potential for detecting climate forcings while minimizing the influence 

of landcover, human, and political influences. As such, these identified phenoregions can form 

the basis for a global phenological monitoring network. 

4. Quality Assessment: 

We obtained the 1982-1999 (1994 not used because of sensor failure) 10-day composite 8-km 

Pathfinder Advanced Very High Resolution Radiometer Land (PAL) Normalized Difference 

Vegetation Index (NDVI) data set. The PAL data set contains extensive artifacts related to 

within- and among-sensor calibration, volcanic eruptions, and water vapor. By intentionally 

selecting the PAL dataset, we implemented an extremely conservative approach: only those 

pixels whose annual cycle is stronger than the inherent PAL noise passed our initial filter.  

Our approach, which was designed only to select optimal regions, not to represent the possible 

distribution of biome/climate combinations, strongly suggests that a limited region of the globe is 



suitable for climate response monitoring with coarse resolution sensors. Other regions, especially 

those dominated by precipitation variability, are also likely to be highly responsive to climate 

change and are not included here. For these critical regions in which coarse resolution 

monitoring is not optimal or in which other factors are likely to confound results, we advocate 

the use of finer resolution sensors and ground observations coupled with landcover and landuse 

histories, and the comparison of protected and non-protected regions. 

5. Data Acquisition Materials and Methods: 

We obtained the 1982-1999 (1994 not used because of sensor failure) 10-day composite 8-km 

Pathfinder Advanced Very High Resolution Radiometer Land (PAL) Normalized Difference 

Vegetation Index (NDVI) dataset. Next, we conducted a continuous wavelet transformation of 

the 612-element NDVI timeseries for each pixel. We calculated annual time averaged local 

wavelet spectra and identified pixels in which the annual time scale was dominant in at least 15 

of 17 possible years. This step identified the 1,012,866 pixels for which the annual scale was 

consistently strong and therefore tractable for coarse resolution phenology monitoring. Nearly all 

arid shrublands, deserts, and moist tropical forests were eliminated.  

We then used an iterative k-means clustering approach [Hargrove and Hoffman, 2005] of the 

PAL NDVI and an eight-element global 1961 to 1990 monthly climatology that included 

precipitation, wet-day frequency, temperature, diurnal temperature range, relative humidity, 

sunshine duration, ground frost frequency and windspeed [New et al., 2002] reprojected to the 8 

km PAL Goodes Interrupted Homolosine projection to identify the groups of pixels forming the 

elemental monitoring units. The clustering approach, performed on an Oak Ridge National 

Laboratory parallel supercomputer, generated n initial cluster centroids spaced evenly in the 708-

axis hyperspace (all data were normalized to a mean of zero and a unit variance, individually by 

axis). Each pixel was then assigned to the centroid with the nearest Euclidian distance. Mean 

centroid locations were recalculated based on the assigned pixels and the process was repeated 

until less than 0.05% of pixels were reassigned. Although techniques exist to reduce the 

dimensionality of clustering inputs, the inclusion of correlated axes does not strongly affect final 

grouping. Given that sets of axes without perfect correlation (as will occur with landcover 

changes or disturbances) can add discriminatory information and that axes used here represent 

either a climate descriptor or NDVI at a particular date, we chose to retain all axes. 

We experimented with a range of clusters from 10 to 1000 and found that 500 clusters provided 

an optimal separation such that clusters tended to exist on only one continent and the distribution 

did not contain a high frequency of minimally represented clusters. We created three clusterings: 

(1) climate alone, (2) NDVI alone; and (3) climate and NDVI. Climate alone produced large 

homogeneous clusters; NDVI alone produced large numbers of clusters with only one or a few 

pixels; NDVI and climate provided good representation of distinctions in landcover and 

topography without creation of numerous sparse clusters. We adopted use of the NDVI and 

climate clusters, which we term phenoregions. The phenoregions capture well known vegetation 

features, such as precipitation gradients in Sahelian Africa, the mesic periphery of Australia, and 

extensive crop-dominated regions of the Midwestern United States. Use of the PAL data will 

tend to create phenoregions with similar satellite contamination, a useful characteristic for 

assessing long-term trend attribution between corrected and uncorrected NDVI datasets. 



Selection of Clusters: At this stage, the 500 climatically and phenologically self-similar 

phenoregions represented groups of pixels appropriate for the formation of spatially composited 

timeseries. We then used a four-step process to identify phenoregions, by landcover, with 

characteristics likely to maximize their utility for climate-response monitoring.  

First, to minimize the incidence of sparse clusters and consequent potential for 

georegistration/georectification difficulties, we removed all clusters with fewer than 100 pixels. 

Second, we removed clusters if the categorical landcover [DeFries et al., 1998] with the highest 

percent cover was crop, barren, or urban, all of which are likely to be responsive to non-climatic 

forcings. Third, we implemented a ranking system designed to represent quantitatively the 

suitability of the remaining 211 clusters for climate response monitoring. Simply, the abundance 

of the dominant landcover and consistent information from a vegetation continuous fields 

product increased rankings whereas cropland, barren, or urban landcovers, evidence of human 

impacts, and political diversity reduced rankings. See Table 1 for details. Fourth, we used 

elements of the same ranking system in a filter to eliminate clusters with low scores in one or 

more categories. 

The remaining 140 phenoregions existed almost exclusively in mid to high latitudes of North 

America and Eurasia. In this final selection, the dominant biomes were evergreen needleleaf 

forest and woodlands. Grasslands, mixed forests, and deciduous needleleaf forests were well 

represented whereas evergreen broadleaf forests, deciduous broadleaf forests, and wooded 

grasslands were sparse. The selected evergreen broadleaf forest phenoregions existed in 

seasonally dry regions; no equatorial moist tropical forest was selected. No arid shrublands were 

selected. Given that much of the NDVI amplitude in northern forests is related to annual snow 

cover patterns, monitoring in these abundant phenoregions should focus on trend attribution to 

snow versus vegetation dynamics. This decoupling of low canopy amplitude in many boreal 

forests from a strong snowmelt signal is challenging with AVHRR records and should be a focus 

of future ground campaigns linked to multi-resolution remote sensing.  

With the exception of a phenoregion in southeastern Madagascar (barely visible at top), Africa 

was removed, usually as a result of high political diversity within the longitudinally extensive 

phenoregions. Small dry evergreen broadleaf forest phenoregions existed in South America but 

the continent, in general, did not pass our screening criteria. The single wooded grassland 

phenoregion spanned nearly the entirety of northern Australia. The deciduous broadleaf forest 

and western European regions were minimally represented. 

Table 1. Ranking and Screening of Phenoregions
a
 

Variable Ranking Impact Cluster Acceptable If 

pixels NA >100 

dominant landcover
b
 NA Not crop, urban, or barren 

percent dominant landcover
b
 + >30% 

percent urban + crop + barren
b
 - <30% 

mean percent bare cover
c
 - <30% 

mean percent tree cover
c
 + for forests forests >30% 

  10% > woodland < 60% 
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  10% > wooded grassland < 40% 

mean percent herbaceous cover
c
 + for grassland grasslands >40% 

  woodlands >20% 

  wooded grasslands >40% 

mean human footprint
d
 - <30 

political diversity
e
 - <50 

a
For ranking, variables were calculated or averaged for the phenoregion and added (+) or subtracted (−). Note that for 

woodlands and wooded grasslands, the vegetation continuous fields were not used. All rankings were scaled from 0 to 

100. Clusters were accepted as a valid phenoregions if the listed conditions were met. Acceptability criteria are not 

absolute; users are encouraged to develop customized screenings using the archived supporting materials. All data existed 

or were reprojected to the 8 km global Goode's Homolosine projection. See White et al. (2005) for more details. 
b
Categorical landcover [DeFries et al., 1998] with the highest percent cover. 

c
From vegetation continuous fields product [Hansen et al., 2003]. 

d
Based on population, land transformation, accessibility, and stable electrical light sources [Sanderson et al., 2002]. 

Dimensionless from 0 (no human footprint) to 100 (highest possible human footprint). 
e
Based on Center for International Earth Science Information Network (Gridded population of the world (GPW), version 

2, 2000, available at http://sedac.ciesin.columbia.edu/plue/gpw) and Simpson's diversity index [Simpson, 1949]. Ranges 

from 0 (phenoregion contains only one country) to 100 (infinite number of countries).  

6. Data Access: 

This data is available through the Oak Ridge National Laboratory (ORNL) Distributed Active 

Archive Center (DAAC) or the EOS Data Gateway. 

Data Archive Center: 

Contact for Data Center Access Information: 

E-mail: uso@daac.ornl.gov 

Telephone: +1 (865) 241-3952 

FAX: +1 (865) 574-4665 

Product Availability: 

...Requested data can be provided electronically on the ORNL DAAC's anonymous FTP site or 

on various media including, CD-ROMs, 8-MM tapes, or diskettes. 

Reading the Media: 

(To be completed manually by Document Curator)  

Software and Analyses Tools: 

(To be completed manually by Document Curator)  
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