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Summary
This dataset provides global monthly average gross primary productivity (GPP; g carbon/m2/d) modeled at 8 km spatial resolution for each of the 35
years from 1982-2016. GPP is based on the well-known Monteith light use efficiency (LUE) equation but was improved with optimized spatially and
temporally explicit LUE values derived from selected FLUXNET tower site data. Optimized LUE was extrapolated to a consistent 8 km resolution global
grid using multiple explanatory variables representing climatic, landscape, and vegetation factors influencing LUE and GPP. Global gridded long-term
daily GPP was derived using the optimized LUE, Global Inventory Modeling and Mapping Studies (GIMMS3g) canopy fraction of photosynthetically
active radiation (FPAR), and Modern-Era Retrospective analysis for Research and Applications, Version 2, (MERRA-2) meteorological information. These
data will improve satellite-based estimation and understanding of GPP using a refined LUE model framework.

For deriving optimized LUE, FLUXNET data from the La Thuile FLUXNET synthesis database of 149 tower sites were used for model training and 54
tower sites from the more recent FLUXNET2015 global synthesis data record were used for independent model validation. The GIMMS3g FPAR data for
grid cells collocated with the tower locations were temporally matched with the tower GPP records and optimized LUE for each site was estimated and
then extrapolated to the global grid. GIMMS3g data were linearly interpolated to produce a continuous daily FPAR record for each 8 km global grid cell
from 1982 to 2016 and used in the LUE model to produce the daily GPP estimates.

There is one data file in netCDF (*.nc4) format included with this dataset.

Figure 1. Global monthly gross primary productivity (GPP) of biomass for December 2016.
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1.  Dataset Overview
This dataset provides global monthly average gross primary productivity (GPP; g carbon/m2/d) modeled at 8 km spatial resolution for each of the 35
years from 1982-2016. GPP is based on the well-known Monteith light use efficiency (LUE) equation but was improved with optimized spatially and
temporally explicit LUE values derived from selected FLUXNET tower site data. Optimized LUE was extrapolated to a consistent 8 km resolution global
grid using multiple explanatory variables representing climatic, landscape, and vegetation factors influencing LUE and GPP. Global gridded long-term
daily GPP was derived using the optimized LUE, Global Inventory Modeling and Mapping Studies (GIMMS3g) canopy fraction of photosynthetically
active radiation (FPAR), and Modern-Era Retrospective analysis for Research and Applications, Version 2, (MERRA-2) meteorological information. These
data will improve satellite-based estimation and understanding of GPP using a refined LUE model framework.

For deriving optimized LUE, FLUXNET data from the La Thuile FLUXNET synthesis database of 149 tower sites were used for model training and 54
tower sites from the more recent FLUXNET2015 global synthesis data record were used for independent model validation. The GIMMS3g FPAR data for
grid cells collocated with the tower locations were temporally matched with the tower GPP records and optimized LUE for each site was estimated and
then extrapolated to the global grid. GIMMS3g data were linearly interpolated to produce a continuous daily FPAR record for each 8 km global grid cell
from 1982 to 2016 and used in the LUE model to produce the daily GPP estimates.
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2.  Data Characteristics
Spatial Coverage:  Global

Spatial Resolution: 0.083333333 deg (~8 km)

Temporal Coverage: 1982-01-01 to 2016-12-31

Temporal Resolution: Monthly average

Study Area: Latitude and longitude are given in decimal degrees.

Sites Westernmost Longitude Easternmost Longitude Northernmost Latitude Southernmost Latitude

Global -180 180 90 -90

Data File Information

There is one data file with this dataset in netCDF (*.nc4) format: gross_primary_productivity_monthly_1982-2016.nc4.

Data File Details

missing data: -9999
CRS: EPSG:4326, proj4:+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs.

Table 1. Variable names and descriptions.

Variable Units Description

GPP g m-2 d-1 Monthly average of gross primary productivity (GPP) of biomass for the years 1982-2016 expressed as carbon.

3.  Application and Derivation
The results of Madani et al. (2017) revealed large spatial variability in optimal LUE levels both within and among global biomes that are related to
heterogeneous landscape and plant trait characteristics. LUEopt was defined across a global network of flux tower measurement sites representing major

biome types and explained the observed LUEopt spatial variability using a set of predictor variables, including vegetation characteristics represented by a

global land cover classification, satellite-based SIF observations, SLA from a global dataset of physical plant traits, and landscape characteristics
represented by a digital terrain map. Global GPP was modeled using a light use efficiency (LUE) model and the new LUEopt map as a primary ancillary

input. The approach used to derive the output LUEopt data can lead to better LUE model-based global GPP predictions and understanding.

4.  Quality Assessment
Simulations to derive these data showed significant improvement over alternative GPP simulations derived using prescribed LUEmax constants for

different biome types. The LUEopt modeled GPP also performed better than the LUEmax-GPP simulations for a set of independent global tower validation

sites. Refer to Madani et al. (2017) for additional details.

5.  Data Acquisition, Materials, and Methods
Global, long-term GPP data were created using GIMMS-3g FPAR and MERRA-2 meteorological information. GPP is based on the LUE concept but
enhanced with optimized spatially and temporally explicit LUE values derived from FLUXNET tower data.

Flux Tower-based LUEopt Calculations

For flux tower-based LUEopt calculations, a global network of 149 tower sites from the La Thuile FLUXNET synthesis database (Baldocchi, 2008) and
the more recent FLUXNET2015 (FLUXNET, 2015) global synthesis data record was used. Fifty-four tower sites from the FLUXNET2015 record were
selected for model testing and the La Thuile tower data record was used for model training purposes. The tower eddy covariance CO2 flux measurement

sites were selected for this on the basis of having at least one full year of gap-filled daily CO2 flux data and representing a broad range of global biomes.



Figure 2. Location of global flux tower sites used for estimation of optimum light use efficiency (LUEopt). Tower sites are overlaid on a global land cover
map (MODIS MCD12C1-Type2). The FLUXNET tower sites selected for this study include 95 training sites and 54 validation sites used for model
LUEopt and GPP assessments. Source: Madani et al., 2017

The GIMMS3g bimonthly FPAR record (Zhu et al., 2013) and temporal linear interpolation of the bimonthly data were applied to produce a continuous
daily FPAR record for each global grid cell over the 2000 to 2011 record. The FPAR data for grid cells collocated with selected tower site locations were
temporally matched with the tower GPP records. LUEopt for each selected tower site was estimated by selecting the upper 98–99.5% bin of daily gap-

filled GPP values throughout the available tower measurement years and using these values to represent the maximum daily GPP (GPPmax) from each

tower site. It is assumed that at the upper bin of GPP, plant activity is not restricted by constraining climate factors. For all days with such criteria, LUE
is defined as

   (1)

APAR is the product of FPAR defined from the GIMMS3g record and daily PAR, which is estimated as half of the global incoming shortwave solar
radiation derived from the MERRA-2 global reanalysis (Bosilovich et al., 2015; Molod et al., 2015). For each of the tower sites, the tower-derived daily
LUE observations were averaged falling in the upper GPP range (98–99.5%) from Equation 1 and these results were used to represent the LUEopt value

of each site.

Extrapolating LUEopt from Point to Global Scale

Multiple explanatory variables derived from other ancillary data were used as proxies to represent potential landscape features and vegetation factors
influencing LUEopt and GPP (Table 2).

Table 2. List of environmental variables chosen for extrapolating flux tower optimum light use efficiency (LUEopt) values over the global domain.

Variable Geophysical Data Abbreviation Source

Climate

Annual precipitation (mm) Precip

Hijmans et al. (2005)
Annual temperature (°C) Temp

Temperature of warmest quarter (°C) Temp_WQ

Precipitation of warmest quarter (mm) Precip_WQ

Average annual vapor pressure deficit (Pa) VPD
Bosilovich et al. (2015)

Average annual soil moisture (m3 m−3) SM

Topography
Elevation (m) DEM Farr et al. (2007)

Topography wetness index TWI  

Plant traits
Specific leaf area (m2 kg−1) SLA

Kattge et al. (2011); Madani et al. (2014)
Canopy height (m) Height

Others

Solar-induced fluorescence (mW m−2 sr−1 nm−1) SIF Joiner et al. (2011, 2013)

Average annual fraction of photosynthetically active radiation FPAR Zhu et al. (2013)

Land cover classification (MODIS MCD12C1-Type 2) Land cover Friedl et al. (2010)

Variables used in the final linear mixed effect model for LUEopt extrapolation

The upper 95–98% quantile of SIF data were used as a proxy for LUEopt and SIFyield (emitted SIF per absorbed PAR). The nearest neighbor technique

was used to resample all of the available data sets into a consistent 8 km resolution global grid as the GIMMS3g FPAR record. The Pearson correlation
coefficient was used to select the variables with the highest predictive power and collinearity of less than 70% to build a linear mixed effect model.

For modeling LUEopt, the global tower sites were separated into two subsets for model training and testing purposes; the 95 tower training sites from the

La Thuile record and testing using the 54 independent tower sites from the FLUXNET2015 database.

A limited number of tower sites were available for some land cover classes, and these classes were merged into coarser sets of needleleaf (evergreen
needle leaf forest (ENF) + deciduous needle leaf forest (DNF)), shrubland (closed shrubland (CSH) + open shrubland (OSH)), and savanna (woody
savannas (WSA) + savanna (SAV)) categories for regression analysis. All other classes were kept consistent with the underlying land cover map
(Madani et al., 2017).

Modeling the Global Daily GPP

The bimonthly GIMMS3g FPAR data were linearly gap-filled to create a continuous global daily FPAR data record from 1982 to 2016. Meteorology data
including daily minimum air temperature and incoming solar radiation were acquired from MERRA-2 global reanalysis (Bosilovich et al., 2015) and were
used with the interpolated daily FPAR as primary LUE model inputs. The daily meteorology data were resampled from a native 0.5 × 0.65° spatial



resolution to the same 8-km resolution global grid as the GIMMS3g FPAR inputs. The vapor pressure deficit was estimated using daily surface air
temperature and dew point temperature, while daily GPP was modeled as

   (2)

where fVPD and fT represent dimensionless environmental constraint functions ranging between zero (fully constrained) and unity (no effect) that
describe the reduction in LUE and GPP due to cold temperatures:

    (3)

and excessive atmosphere moisture deficits:

    (4)

The Min and Max subscripts in equations 3 and 4 represent the minimum and maximum defined thresholds for minimum daily temperature (Tmin) and

vapor pressure deficit (VPD) functions.

Refer to Madani et al. (2017) for additional information.

6.  Data Access
These data are available through the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

Global Monthly GPP from an Improved Light Use Efficiency Model, 1982-2016

Contact for Data Center Access Information:

E-mail: uso@daac.ornl.gov
Telephone: +1 (865) 241-3952
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