A HOMOGENIZED SOIL DATA FILE FOR GLOBAL ENVIRONMENTAL RESEARCH: A SUBSET OF FAO, ISRIC AND NRCS PROFILES

(Version 1.0)

N.H. Batjes (Editor)

July 1995

INTERNATIONAL SOIL REFERENCE AND INFORMATION CENTRE

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior permission of the copyright owner. Applications for such permission, with a statement of the purpose and extent of the reproduction, should be addressed to the Director, ISRIC, P.O. Box 353, 6700 AJ Wageningen, The Netherlands.

Copyright © 1995, International Soil Reference and Information Centre (ISRIC)

Disclaimer

While every effort has been made to ensure that the data are accurate and reliable, ISRIC cannot assume liability for damages caused by in-accuracies in the data or as a result of the failure of the data to function on a particular system. ISRIC provides no warranty, expressed or implied, nor does an authorized distribution of the data set constitute such a warranty. ISRIC reserves the right to modify any information in this document and related data sets without notice.

Correct citation:

Batjes, N.H. (ed.), 1995. A homogenized soil data file for global environmental research: a subset of FAO, ISRIC and NRCS profiles (Version 1.0). Working Paper and Preprint 95/10b, International Soil Reference and Information Centre, Wageningen.

Inquiries:

Director, ISRIC P.O. Box 353 6700 AJ Wageningen The Netherlands

Telefax : +31-317-471700 E-mail: soil@isric.nl

A HOMOGENIZED SOIL DATA FILE FOR GLOBAL ENVIRONMENTAL RESEARCH: A SUBSET OF FAO, ISRIC AND NRCS PROFILES

(Version 1.0)

Edited by **N.H. Batjes** (July 1995)

INTERNATIONAL SOIL REFERENCE AND INFORMATION CENTRE

TABLE OF CONTENTS

Abs	stract	1
1.	Introduction	1
2.	Procedures 2.1 The WISE database 2.2 List of soil attributes 2.3 Data sources 2.4 Criteria for accepting profile data 2.5 Selection of "international" profiles 2.6 Sources of uncertainty	3 3 5 5
3.	Discussion and conclusions	7
Ack	xnowledgements	7
Ref	erences	7
App	pendices	9
Ind	ex	.3
	t of Figures 1. Main database files of the WISE data handling system (2)	
Tab	t of Tables le 1. List of attribute data held in WISE (4) le 2. Summary of number of profiles per broad geographic area (6)	
App App App App App App	pendices pendix 1. Number of profiles per country in "international" data set (9) pendix 2. Soil units represented in "international" data set (10) pendix 3. Examples of listings of SDB, ISIS and NRCS profiles (11) pendix 4. Brief installation procedure (17) pendix 5. Structure and attributes of WISE database files (18) pendix 6. WISE 2.1 database coding protocols (25) pendix 7. List of country ISO codes (41)	

Abstract

A homogenized, global set of 1,125 soil profiles is presented. These profiles have been extracted from the database developed at ISRIC for a project on "World Inventory of Soil Emission Potentials" (WISE), as a contribution to the activities of the Global Soils Data Task Group of IGBP-DIS. The subset consists of a selection of 665 profiles originating from digital data files released by the Natural Resources Conservation Service (NRCS, Lincoln), 250 profiles obtained from the Food and Agriculture Organization (FAO, Rome), and 210 profiles from the reference collection of the International Soil Reference and Information Centre (ISRIC, Wageningen). All profiles are georeferenced and classified in the FAO-Unesco Legend whereby they can be linked to the edited and digital version of the FAO-Unesco Soil Map of the World. This data set is being released in the public domain for use by global modellers and other interested scientists. It is envisaged that the data set will be expanded by ISRIC when new, uniform soil profile data become available.

Keywords: soil profiles; WISE database

1. Introduction

The compilation and processing of large-scale data sets of the world's environmental resources, using well-documented procedures and standards, is crucial for many global modelling activities (e.g., Zuidema et al., 1994). Staff at ISRIC have developed a uniform methodology for a global database of soil properties within the framework of WISE, a project on World Inventory of Soil Emission Potentials (Batjes and Bridges, 1994). During this project a wide range of profiles from all regions of the world have been screened for completeness and incorporated into the WISE data handling system. The profiles in WISE were compiled from 5 main sources: (a) ISRIC's Soil Information System, ISIS (Van de Ven and Tempel, 1994); (b) FAO's Soil Database System, SDB (FAO, 1989); (c) digital soil data set compiled by the Natural Resources Conservation Service (NRCS, formerly SCS) of the United States of America; (d) profiles obtained from an international data gathering activity coordinated by WISE project staff, in which national soil survey organisations were asked to supply descriptions and analyses of profiles representative of the units of the Soil Map of the World present in their countries; and, (e) suitable profiles gathered from survey monographs held at ISRIC's library. Special attention was given to the systematic compilation of data and recording of the laboratory methods by which the analytical results were obtained. All profiles are classified in the FAO-Unesco (1974) legend, whereby they can be linked to the spatial data shown on an edited and digital version of the Soil Map of the World (FAO, 1991). This report describes a uniform set of 1,125 soil profiles, extracted from the WISE database, for use by global modellers. The selected profiles correspond with what has become known as the "international" profiles of the WISE database, and formed an ISRIC contribution to the activities of the Global Soils Data Task Group of IGBP-DIS (Scholes *et al.*, 1994). The set includes 665 profiles from the USDA-NRCS, 250 from the FAO-SDB and 210 from the ISRIC-ISIS databases.

Section 2 of this report describes the procedures for compiling and extracting the data set, and possible user groups are identified in Section 3. Appendix 1 is a listing of the countries from which the profiles originate. The FAO-Unesco (1974) classification of these profiles is listed in Appendix 2. Examples of listings of profiles derived from these data files are attached as Appendix 3, and the installation procedure is explained in Appendix 4. Appendix 5 presents the structure and attributes of the WISE database, Appendix 6 presents the database coding protocols and, finally, the country ISO codes are given in Appendix 7.

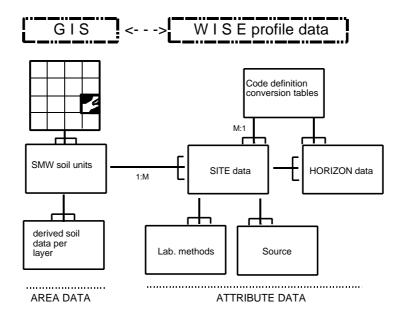


Fig. 1. Main database files of the WISE data handling system (M:1 stands for many to one relations, and 1:M for one to many relations)

2. Procedures

2.1 The WISE database

WISE 2.1 is a soil data handling system developed for IBM®-compatible computers. It includes a collection of over 90 compiled program modules for storing, editing, selecting and printing soil data. The individual modules for handling the soil profile data are linked in a user-friendly manner by a unified menu system (Fig. 1).

All procedures are written in dBASE IV®, as are the structures for the database files (Batjes, 1995). The full WISE database holds a growing selection of globally distributed profiles considered to be representative of the soil units shown on a $\frac{1}{2}$ ° latitude by $\frac{1}{2}$ ° longitude version of the corrected and digitized 1:5 M FAO-Unesco Soil Map of the World.

2.2 List of soil attributes

The profile component of the WISE database includes information on: (a) soil classification and site data; (b) soil horizon data; (c) source of data; (d) the methods used for determining the analytical data; and, (e) a series of "code-definition" translation files (Batjes, 1995). The full complement of data selected for inclusion in the WISE profile database is listed in Table 1. The attributes shown are similar to those proposed for the European Soil Analytical Database (Madsen and Jones, 1995) and for a Global Soils Database to be developed under the aegis of IGBP-DIS (Ingram, 1993). The central aim of the WISE database is to provide a basic set of uniform soil data for a wide range of global studies, including assessments of crop production, soil vulnerability to pollution and soil gaseous emission potentials (Batjes *et al.*, 1995).

2.3 Data sources and description methods

The "international" data set holds profiles released by ISRIC-ISIS, FAO-SDB and USDA-NRCS. The profiles originating from ISIS have been compiled specifically to be representative of the map units of the Soil Map of the World, with special emphasis on the tropics. They have all been described using the *Guidelines for Soil Description* (FAO-ISRIC, 1990) and analysed in a uniform manner in the ISRIC laboratory (Van Reeuwijk, 1992). The profiles derived from the NRCS set originate from the USA and 41 other countries. Soil descriptions in this data set follow the methodology of the *Soil Survey Manual* (USDA, 1993), and the analyses have been

Table 1. List of attribute data held in WISE.

Site Data	Horizon Data
WISE_ID (unique identifier of profile)	WISE_ID + horizon_NO (unique reference number for horizon within a profile)
Soil classification and source	1
FAO-Unesco classification (1974 legend)	General attributes
phase	horizon designation
topsoil texture class	depth, top
FAO-Unesco classification (1990a revised	depth, bottom
legend)	matrix colour (dry and moist)
phase	mottling
USDA subgroup level classification edition (year) of Soil Taxonomy	presence of roots
National classification	Chemical attributes*
source of data	organic carbon
name of laboratory where analyses were made	total N
soil profile description status	available P
date of description	pH-H ₂ O
date of description	pH-KCl
Location	pH-CaCl ₂
country	electrical conductivity (EC)
location of soil profile, descriptive	free CaCO ₃
latitude (deg/min/s)	CaSO ₄
longitude (deg/min/s)	exchangeable Ca ²⁺
altitude	exchangeable Mg ²⁺
unitade	exchangeable Na ⁺
General site data	exchangeable K ⁺
major landform	exchangeable $Al^{3+} + H^+$ (exchangeable
landscape position	acidity)
aspect	exchangeable Al ³⁺ (exchangeable aluminum)
slope	cation exchange capacity (CEC)
drainage class	effective CEC (at field pH)
groundwater depth	base saturation (as percent of CEC)
effective soil depth	(F (F
parent material	Physical attributes*
Köppen climate classification	structure type
land use	particle size distribution:
natural vegetation	weight % sand
5	weight % silt
	weight % clay
	stone and gravel content
	bulk density
	volume per cent water held at specified suctions
	hydraulic conductivity at specified suctions

WISE, World Inventory of Soil Emission Potentials; * Analytical methods are specified in a separate key-attribute file.

made at the Lincoln laboratory (USDA, 1984). These analytical methods compare well with those used at ISRIC (Kimble and Van Reeuwijk, *pers. comm.*, 1994). Whereas profiles originating from the SDB database (FAO, 1989) have been described using the same guidelines which ISRIC used, the chemical and physical analyses have taken place in different laboratories (FAO-Unesco, 1971-1981). Therefore, it is not always possible to compare all SDB data sets directly with those of NRCS and ISIS (see Vogel, 1994).

2.4 Criteria for accepting profile data

Strict criteria have been defined for accepting profiles into WISE: (a) completeness and apparent reliability of data; (b) traceability of source of data; (c) classifiable in the FAO-Unesco (1974) legend; and (d) geo-referenced within defined limits. Profiles from the "international" data holders have been off-loaded to WISE using an automated datatransfer facility (Tempel, 1994). Procedures, called map-files, have been developed for the transfer of data from the NRCS, SDB and ISIS databases to WISE 2.1 (Zunnenberg, unpublished data, 1994). Following the initial transfer to a WISEcompatible dBASE® format, the integrity of the transferred data was checked by a second computer module. It is only after this second operation that the "screened" data sets were appended to the main WISE database files. Inherently, the use of an automated transfer facility will encompass some loss of information (Tempel, 1994). The original reference number of a soil profile is documented in the WISE database files. In all cases, the source of data and laboratory where the analyses have been carried out are specified (see Appendix 3). The WISE attribute-definition files which are provided with the "international" data set should never be tampered with in any way, because this will affect the integrity of the database.

2.5 Selection of "international" profiles

An extraction module was written for the mechanical extraction of the "international" profiles stored in the WISE database. The selected profiles are from various regions of the globe, with few profiles originating from Europe (Table 2). A data set of European profiles is being compiled in a separate activity by the European Union (Madsen and Jones, 1995), but so far unresolved copyright matters seem to have hindered its release to third parties.

Table 2. Summary of number of profiles per broad geographic area (total= 1,125)

Total
315
56
280
7
158
241
68

Appendix 1 lists the countries from where the soil profiles originate. The classification of these soils is presented in Appendix 2. All profiles from the NRCS data set have been classified at ISRIC into the original (FAO-Unesco, 1974) and revised (FAO, 1990a) legend (see Spaargaren and Batjes, 1995). About 94 % of the 1,125 profiles are classified in the Revised Legend (FAO, 1990a) and about 88 % according to Soil Taxonomy (Soil Survey Staff, 1994 and earlier versions).

2.6 Sources of uncertainty

Initial printouts obtained from the NRCS, SDB and ISIS data sets after transfer into WISE sometimes contained distorted soil horizon designations and duplicate horizon depths. This was partly associated with the fact that soil horizon and sample depths were not always defined unambiguously in the source data files. Whenever possible, these "data issues" have been remedied manually with reference to the original data sets.

Differences in versions of USDA Soil Taxonomy used in the NRCS source files formed a difficulty when classifying profiles according to the FAO Legend. Similarly, different horizon designations are used in the various "international" data sets.

In some cases, profiles held in the source data files differed from those published elsewhere for the same profiles. This was the case for some NRCS profiles from Brazil, Korea and Zambia (see Spaargaren and Batjes, 1995), some SDB profiles from Botswana (see FAO, 1990b), and some ISIS profiles. This aspect illustrates the difficulty in preserving data integrity in digital files since their contents can easily be corrupted. In most cases, data sets obtained from NRCS, SDB and ISIS were taken at "face value" in view of the fact that they have been officially released for inclusion in the WISE database. Nonetheless, all transferred data sets have been submitted to WISE's computerized and rigorous data-checking scheme leading to rejection of some of the profiles (see Section 2.4).

In case of missing latitude-longitude references, approximate coordinates have been derived from the Times Atlas (1993), using general information on location (e.g., Machakos, Kenya).

3. Discussion and conclusions

Version 1.0 of the "international" data set is being released with the implicit understanding that the source will be acknowledged in all publications arising from use of the data. The "international" data set is particularly meant for those scientists who wish to study "primary" soil data. Files are presented in dBASE® IV format using the WISE database structure and coding conventions (see Batjes, 1995).

The "international" data sets held in WISE have been proposed to serve as the nucleus for a global profile data set to be developed by the Global Soil Data Task Group of IGBP-DIS (Scholes *et al.*, 1994). The data set discussed in this paper, with a selection of soil profiles from three major international holders of soil data — NRCS, FAO and ISRIC —, is to provide the initial soil profile data for this collaborative activity.

It is anticipated that new releases of the "international" data set will be prepared as new profile data are being added to the WISE database, notably about 400 profiles from ISRIC's project on National Soil Reference and Database Collections (NASREC).

The WISE database proper, which currently contains over 4,300 profiles, is being used by ISRIC to generate a series of uniform data sets of derived soil properties, linked to a ½° longitude by ½° latitude version of the edited and digital Soil Map of the World (FAO, 1991), for subsequent use by global modellers.

Acknowledgements

As with any collaborative activity, the WISE project has been carried out with the help of many people. The data held in the current "international" data set have been obtained from various organisations including: (a) the Natural Resources Conservation Service (USDANRCS, formerly SCS) at Lincoln, and J.M. Kimble in particular; (b) FAO's Land and Water Development Division (AGL), notably F.O. Nachtergaele; and (c) ISRIC, particularly J.H. Kauffman co-ordinator of the NASREC/ISIS project. Crucial, auxiliary software for the digital transfer of data obtained from these organisations to the WISE database structure was developed and tested at ISRIC by P. Tempel. The accompanying "map files" were elaborated by W. Zunnenberg. All profiles transferred from the NRCS data tape have been checked and classified in the FAO-Unesco system by O.C. Spaargaren under a subcontract with IGBP-DIS. All profiles derived from ISIS were manually checked by E.M. Bridges. Constructive comments on creating the "international" data set were received from W.V.P. van Engelen and L.R. Oldeman. The contributions of ISRIC's staff in the WISE project activities, and those of E.M. Bridges in particular, are gratefully acknowledged.

The WISE data handling system has been developed at ISRIC for a project on the Geographic Quantification of Soil Factors and Processes that Control Fluxes of Greenhouse Gases —known as World Inventory of Soil Emission Potentials (WISE)— with sponsorship from the Netherlands National Research Programme on Global Air Pollution and Climate Change (Project 851039).

References

Batjes, N. H., 1995. World Inventory of Soil Emission Potentials: WISE 2.1 - Profile Database User Manual and Coding Protocols. Technical Paper 26, ISRIC, Wageningen.

- Batjes, N. H. and E. M. Bridges, 1994. Potential Emissions of Radiatively Active Gases from Soil to Atmosphere with Special Reference to Methane: Development of a Global Database (WISE). *J. Geophys. Res.* **99(D8):** 16,479-16,489.
- Batjes, N. H., E. M. Bridges and F. O. Nachtergaele, 1995. World Inventory of Soil Emission Potentials: Development of a Global Soil Database of Process Controlling Factors. In: Climate Change and Rice (Editors S. Peng et al.), Springer-Verlag, Heidelberg, pp. 102-115.
- FAO, 1989. FAO-ISRIC Soil Database SDB. World Soil Resources Report 60 (Reprinted), FAO, Rome.
- FAO, 1991. *Digitized Soil Map of the World*. World Soil Resources Report 67, FAO, Rome. FAO-Unesco, 1974. *Soil Map of the World*. *Volume I: Legend*. Unesco, Paris.
- FAO, 1990a. *FAO-Unesco Soil Map of the World: Revised Legend*. World Soil Resources Report 60, FAO, Rome [Reprinted as Technical Paper 20, ISRIC, Wageningen, 1994].
- FAO, 1990b. *Explanatory note on the Soil Map of the Republic of Botswana*. AGBOT/85/011, FAO, UNDP and Republic of Botswana, Gaborone.
- FAO-ISRIC, 1990. Guidelines for Soil Description. FAO, Rome.
- Ingram, J. S. I. (ed.), 1993. IGBP-DIS & GCTE Global Soils Database Workshop. Meeting held at the Soil Survey and Land Research Centre, Silsoe (8-9 October 1992), *IGBP-DIS Working Paper 7*, Paris.
- Madsen, H. B. and R.J.A. Jones, 1995. The establishment of a soil profile analytical database for the European Union. In *European Land Information Systems for Agro-environmental Monitoring* (Editors D. King, R.J.A. Jones and A.J. Thomasson), Office for Official Publications of the European Communities, Luxembourg, pp. 55-63.
- Scholes, R. J., D. Skole and J. S. Ingram, 1994. *A Global Database of Soil Properties: Proposal for Implementation*. IGBP-DIS Working Paper 10, International Geosphere Biosphere Program, Data and Information System, Paris.
- Soil Survey Staff, 1993. *Soil Survey Manual (revised and enlarged edition)*. United States Department of Agriculture, Handbook No. 18, Washington D.C.
- Soil Survey Staff, 1994. *Keys to Soil Taxonomy (Sixth Edition)*. United States Department of Agriculture, Soil Conservation Service, Washington D.C.
- Spaargaren, O.C. and N.H. Batjes, 1995. Report on the classification into FAO-Unesco Soil Units of Profiles Selected from the NRCS Pedon Database for IGBP-DIS. Working Paper and Preprint 95/01, ISRIC, Wageningen.
- Tempel, P., 1994. *Data Transfer Facility between Disparate Soil Databases*. Working Paper and Preprint 94/08, International Soil Reference and Information Centre, Wageningen.
- Times Atlas, 1993. The Times Atlas of the World. Times Books, Harper Collins Publ., London.
- Van de Ven, T. and P. Tempel, 1994. *ISIS 4.0 ISRIC Soil Information System: User Manual*. Technical Paper 15 (rev. ed.), International Soil Reference and Information Centre, Wageningen.
- Van Reeuwijk, L. P., 1992. *Procedures for Soil Analysis (Third ed.)*. Technical Paper 19, International Soil Reference and Information Centre, Wageningen.
- Zuidema, G., G.J. van den Born, J. Alcamo and G.J.J. Kreileman, 1994. Simulation of global land cover changes as affected by economic factors and climate. *Water, Air and Soil Pollution*, **76**: 163-198.

Appendices

Appendix 1. Number of profiles per country in "international" data set.

			-		
Count	ry	Total	Count	ry	Total
AR -	Argentina	5	ML -	Mali	14
AU -	Australia	15	MX -	Mexico	4
BD -	Bangladesh	3	MY -	Malaysia	2
BE -	Belgium	1	MZ -	Mozambique	1
BF -	Burkina Faso	1	NC -	New Caledonia	1
BI -	Burundi	12	NE -	Niger	11
BR -	Brazil	69	NG -	Nigeria	1
BW -	Botswana	33	NI -	Nicaragua	21
CA -	Canada	2	NP -	Nepal	5
CI -	Cote d'Ivoire	12	NZ -	New Zealand	5
CK -	Cook Islands	1	PA -	Panama	14
CL -	Chile	6	PG -	Papua New Guinea	16
CM -	Cameroon	34	PH -	Philippines	42
CN -	China	50	PK -	Pakistan	37
CO -	Colombia	27	PR -	Puerto Rico	1
CR -	Costa Rica	28	RO -	Romania	1
CU -	Cuba	21	RW -	Rwanda	6
DE -	Germany, Fed. Rep.		SB -	Solomon Islands	1
DZ -	Algeria	4	SD -	Sudan	46
EC -	Ecuador	16	SL -	Sierra Leone	1
FI -	Finland	1	SN -	Senegal	2
GN -	Guinea	1	SV -		5
GT -	Guatemala	11	SY -	Syrian Arab Republio	
GY -	Guyana	3	TH -	Thailand	35
HN -	Honduras	8	TN -	Tunisia	15
ID -	Indonesia	58	TO -	Tonga	2
IN -	India	49	TW -	Taiwan	0
IT -	Italy	1	UG -	Uganda	12
JO -	Jordan	14	US -	United States	154
JP -	Japan	4	VE -	Venezuela	6
KE -	Kenya	32	WS -	Samoa	14
KR -	Korea, Republic of	15	YE -	Yemen	26
LB -	Lebanon	2	ZA -	South Africa	4
LS -	Lesotho	15		Zambia	37
MA -	Morocco	5	ZW -	Zimbabwe	16

Appendix 2. Soil units represented in "international" data set (FAO-Unesco, 1974).

```
A: Acrisols
Af= 53 Ag= 12 Ah= 34 Ao= 25 Ap= 15
B: Cambisols
Bc= 11 Bd= 25 Be= 36 Bf= 31 Bg= 7 Bh= 15 Bk= 32 Bv= 12 Bx= 0
C: Chernozems
Cg= 0 Ch= 1
             Ck = 5 Cl = 0
D: Podzoluvisols
Dd= 1 De= 2
             Dg= 0
E: Rendzinas
E = 3
F: Ferralsols
Fa= 10 Fh= 31 Fo= 25 Fp= 3 Fr= 16 Fx= 18
G: Gleysols
Gc= 1 Gd= 11 Ge= 25 Gh= 3
                             Gm = 10 Gp = 2 Gx = 4
H: Phaeozems
Hc= 10 Hg= 9
              Hh= 47 Hl= 21
I: Lithosols
I = 0
J: Fluvisols
              Je= 14 Jt= 7
Jc= 14 Jd= 6
K: Kastanozems
              Kl = 0
Kh=1 Kk=1
L: Luvisols
La= 4    Lc= 33    Lf= 44    Lg= 7    Lk= 5    Lo= 38    Lp= 5    Lv= 3
M: Greyzems
Mg=0 Mo=1
N: Nitosols
Nd= 6 Ne= 15 Nh= 1
O: Histosols
Od= 3 Oe= 0
             0x = 0
P: Podzols
Pf= 0 Pq= 1
              Ph= 6
                     Pl= 2 Po= 4 Pp= 4
Q: Arenosols
              Qf = 3
Oa= 3 Oc= 9
                      01 = 3
R: Regosols
              Re= 16 Rx= 0
Rc= 8 Rd= 6
S: Solonetz
Sg= 4 Sm= 0
               So= 20
T: Andosols
Th= 43 Tm= 14 To= 3 Tv= 20
U: Rankers
U = 0
V: Vertisols
Vc= 66 Vp= 38
W: Planosols
Wd=0 We=3
             Wh = 0 Wm = 1 Ws = 7 Wx = 0
X: Xerosols
Xh = 7 Xk = 8
             X1=11 Xy=5
Y: Yermosols
               Yl=9
                      Yt = 0
Yh = 5 Yk = 4
                             Yy=4
Z: Solonchaks
Zg=1 Zm=1
               Zo= 11 Zt= 1
```

 $[\]star$ For abbreviations see FAO-Unesco (1974), e.g. Af stands for Ferric Acrisols.

Appendix 3. Examples of listings of SDB, ISIS and NRCS profiles.

```
BR054
                                             WISE SOIL PROFILE DATA SHEET
                                                                                                                                                      21/06/95
SOIL CLASSIFICATION:
      FAO-Unesco Legend (1974):
                                               Ferric Luvisol (Lf)
                                                                                                                           Topsoil texture: coarse (C)
                                                                                   Phase: -- (-)
                                               Ferric Luvisol (LVf) Phase: -- (-)
       FAO-Unesco Legend (1990):
      USDA Soil Taxonomy (19--):
      Local Classification System:
      Source_ID:
                               FAO/SDB
                                               Ref. page: FAO-SDB profile: 021011
                                              Descr. status: routine description (2)
      Lab ID:
                               XX01
      Desc. (MM/YY):
                               9 Km SW Marilia, Sao Paulo state (Brazil)
Lat.: S 22 deg. 19 min. -- sec. Lo
      Location:
                                                                                  Lon.: W 050 deg. 00 min. -- sec.
      Coordinates:
      Altitude:
                               620 m
      Landform:
      Position:
      Aspect:
      Slope:
      Drainage class:
Groundwater:
                               moderately well drained (M)
                               -1 to -1 (cm)
      Eff. soil depth > -1 (cm)
      Parent material: sandstone, greywacke, arkose (SC2) (Remarks: -)
Koppen climate: Equat. humid with dry season in low-sun season (driest month <60;Tcm > 18C) (Aw)
      Land use (LU):
      Main crop:
                              coffee (CF)
     Vegetation (VE): -- (-)
Remarks on LU/VE: -
      Vegetation (VE):
HORIZON DATA:
                 ______
  Horiz. Depth Org. Tot. Av. pH ECx CACO GYPS
C N P ------ 3 ITM
                                                                                                                                              CEC ECEC BS
                                                                                                   Exch. bases and acidity
                                            P ------
H2O KCl CaCl2
                                 (%)
  Desig. (cm)
                       (%)
                                                                               (%) (%)
                                                                                               Ca Mg
                                                                                                              K
                                                                                                                       Na Ac Al
                                                                                                                                              (meg/100g) (%)
                         0- 20
                                                                                                                 0.1
                                                                                                3 0
                                                                                                         0.2
                                                                                                                         0.0 -1.0 -1.0
                                                                                                                                                 4 0
                                                                                                                                                      -1 0 83
                                                                                                                         0.0 -1.0 -1.0
              20- 42
                                                                                                        0.2
                                                                                                1.8
                                                                                                                 0.0
                                                                                                                                                 2.5
                                                                                                                                                      -1.0
                                                                                                                                                               80
              42- 77
77- 97
                                                                                                                        4.3
                                                                                                         1.0
                                                                                                                 0.1
                                                                                                                                                 6.0
                                                                                                                                                               90
                                                                                                 3.5
                                                                                                         0.9
  В2
                                                                                                                 0.1
                                                                                                                                                 5.4
                                                                                                                                                               83
              97-209
  AWC HCs HCu
-- (%v/v) (cm/hr)
  Desig. Dry
                                                                                0.0 1.0 1.5 1.7 2.0 2.3 2.5 2.7 3.4 3.7 4.2

    5YR3/3
    - M
    -
    91
    3
    6
    -1
    -1.0
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1

\begin{array}{cccc}
-1.0 & -1.0 \\
-1.0 & -1.0
\end{array}

                                                          -1
                        2.5YR3/6 F F -
5YR4/6 - F -
                                                         2
                                                               B2
                                                 74
                                                                                                       -1
                                                                                                            -1
                                                                                                                                               -1
                                                                                                                                                       -1.0 -1.0
                                                                                                            -1
                                                                                                                  -1
                                                                                                      -1
                                                 80
  BC
  Abbr.: Av. P as mg P205/kg soil; ECx= electrical conductivity in dS/m; Ac= exchangeable (H + Al) in meg/100g;
          BS= base saturation (% of CEC); M= mottles; R= roots; ST= structure; GR = \$ > 2mm size; Bd= bulk density (g/cm3); HC= hydr. conduct., saturated (HCs) resp. unsat. (HCu) in cm/hr; AWC= av. moisture in v/v %; -1 stands for missing numeric values and - for missing alphanumeric values.
```

REMARKS:

SDB-profile= BR011.

REFERENCES:

a) Source of profile data [FAO/SDB-2]:

Various authors (see relevant FAO reports), 1994. Selected soils from FAO's Soil Data Base (SDB; May 94); transfer map-files prepared by W. Zunnenberg. Data from FAO, Rome.

b) Laboratory name and methods [XX01]:

General methods as described in FAO-Unesco Soil Map of the World.

Code and description Analytical method

Organic Carbon: OCO1: Method of Walkley-Black (Org. matter = Org. C x 1.72)
Total Nitrogen: TNO1: Method of Kjeldahl
Available P: TP99: Method not defined
PH-WO: PM02: pH 1:2 5 soil/water solution

Total Nitrogen:

Available P:

pH-H2O:

pH-KCl:

pH-CaCl2:

Electr. conductivity:

CaCO3 content:

Gypsum content:

Exch. Ca, Mg, Na and K:

Exch. acidity and aluminum:

CEC soil:

Effective CEC:

CTO9:

CTO9:

Method of Kjeldahl

TP99: Method not defined

PH02:

pH 1:2.5 soil/water solution

PH02:

pH 1:2.5 soil/M KCl solution

PCO2:

pH in 1:2.5 soil/M CaCl2 solution

ELO4: Elec. conductivity in saturated paste (ECe)

CA04: Calcimeter method (volumetric after adition of dilute acid)

Gypsum content:

EXCh. 2a, Mg, Na and K:

EXCh. acidity and aluminum:

EXCH. Soil:

EXCH. Soil:

CEC soil:

CEC:

Not measured

CSOI:

CEC:

Not measured

CSOI:

CEC:

Not measured

CEC soil: CSO1: CEC in 1M NH4OAc buffered at pH 7

Effective CEC: CE--: Not measured

Base saturation: BSO1: Sum of bases as percentage of CEC (method specified above)

Particle size analysis: TEO1: Pipette method, with appropriate dispersion treatment (c< 0.002 <si< 0.05 <sa< 2mm)

BURKensity: BD--: Not measured

Soil moisture content: MC--: Not measured

Hydraulic conductivity: HC--: Not measured

BR069 WISE SOIL PROFILE DATA SHEET 21/06/95

SOTI CLASSIFICATION:

FAO-Unesco Legend (1974): Ferric Luvisol (Lf) Phase: -- (-) Topsoil texture: coarse (C)

FAO-Unesco Legend (1990): USDA Soil Taxonomy (1992): Haplic Lixisol (LXh) Typic Kanhaplustalf Phase: -- (-)

Local Classification System: Podzolico vermelho

SOURCES:

SITE DATA:

Rio de Janeiro, Itaguai (Brazil) ocation:

Lat.: S 22 deg. 45 min. 0 sec. Coordinates: Lon.: W 43 deg. 41 min. 0 sec.

Atitude: 45 m

Landform: plain (slope 0-8 %; relief int. < 100 m/km) (LP)

osition: lower slope (LS) Aspect:

Slope: 20 % Drainage class: -- (-)
Groundwater: -1 to -1 (cm)
Eff. soil depth > 180 (cm)
Parent material: metamorphic rocks (M) (Remarks: Weathered rock)

Equat. humid with dry season in low-sun season (driest month <60;Tcm > 18C) (Aw) extensive grazing (HE) Koppen climate: Land use (LU):

Wain crop: -- (-)
Vegetation (VE): herbaceous (H)
Remarks on LU/VE: occ. subsistence farming

HORIZON DATA:

Horiz.	Depth	Org.	Tot.	Av.		pH	ECx	CACO	GYPS UM		Exch.	. base	s and	acidit	У 	CEC	ECEC	BS
Desig.	(cm)	(%)	(%)	_	H20	KCl CaCl2		(%)	(%)	Ca	Mg	K	Na	Ac	Al	(meq	/100g)	(%)
Ap E1 E2 Bt1 Bt2 Bt3 CB	0- 14 14- 30 30- 38 38- 50 50- 80 80-100 100-157	0.95 0.42 - 0.38 - 0.27 - 0.34 - 0.18 - 0.13 -	1.00 1.00 1.00 1.00 1.00	-1.0 -1.0 -1.0 -1.0 -1.0	4.7 4.9 6.5 5.8 5.6		0.20 0.05 0.04 0.02 0.02 0.02 0.02	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	1.0 1.0 0.8 0.8 1.4 1.2 0.6	0.5 0.3 0.4 2.3 0.9 1.0	0.2 0.0 0.0 0.1 0.1 0.0 0.0	0.1 0.1 0.1 0.1 0.1 0.2	-1.0	-1.0 -1.0 -1.0 -1.0 -1.0 -1.0	3.7 2.1 2.6 3.9 3.5 4.4 5.0 7.7	1.8 1.4 1.3 3.3 2.5 2.4 2.3	67 50 85 71 55

Horiz.	Colo	ur	М	R	ST	Sand (%)	Silt (%)	Clay	GR (%)	Bd		% V	ol/v	ol m	oist	ure	held	lat	a pF	of		AWC (%v/v)	HCs	HCu /hr)
Desig.	Dry	Moist						(*)			0.0	1.0	1.5	1.7	2.0	2.3	2.5	2.7	3.4	3.7	4.2			
Ap	10YR6/2	10YR4/2	N	MV	SB	69	16	15	-1	-1.0	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1.0	-1.0
E1	10YR6/3	10YR5/4	N	CV	MA	64	15	21	-1	1.57	36	35	29	-1	23	21	-1	18	15	-1	14	15	-1.0	-1.0
E2	10YR6/3	10YR5/4	N	VV	MA	61	13	26	-1	-1.0	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1.0	-1.0
Bt1	5YR6/6	2.5YR4/6	N	VV	SB	28	12	60	-1	-1.0	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1.0	-1.0
Bt2	2.5YR6/6	2.5YR4/6	N	VV	SB	35	16	49	-1	1.43	43	41	38	-1	35	33	-1	32	30	-1	27	11	-1.0	-1.0
Bt3	5YR6/6	4YR4/6	N	_	SB	38	20	42	-1	-1.0	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1.0	-1.0
CB	7.5YR6/6	5YR4/6	N	_	MA	45	26	29	-1	1.54	41	40	38	-1	34	32	-1	30	24	-1	21	17	-1.0	-1.0
C	-	-	-	-	-	55	26	19	-1	-1.0	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1.0	-1.0

Abbr.: Av. P as mg P205/kg soil; ECx= electrical conductivity in dS/m; Ac= exchangeable (H + Al) in meq/100g; BS= base saturation (% of CEC); M= mottles; R= roots; ST= structure; GR = % > 2mm size; Bd= bulk density (g/cm3); HC= hydr. conduct., saturated (HCs) resp. unsat. (HCu) in cm/hr; AWC= av. moisture in v/v %; -1 stands for missing numeric values and - for missing alphanumeric values.

A deep, moderately well drained, red clay soil derived from gneiss; having a yellowish brown, porous, sandy (clay) loam topsoil. The B horizons show coating of illuvial clay and limited permeability.

a) Source of profile data [ISIS-0994]:

Various authors (see relevant ISRIC Country Reports), 1994. ISIS data set of September 1994 (J.H. Kauffman); transfer map-file produced by W. Zunnenberg. See: Van de Ven, T. and P. Tempel, 1994. ISIS 4 - User Manual. Technical Paper 15, ISRIC, Wageningen.

ISRIC Work. Pap. 95/10b

b) Laboratory name and methods [NL01]:

International Soil Reference and Information Centre (ISRIC) laboratory, Wageningen, The Netherlands.

Analytical method Code and description Organic Carbon:

Organic Carbon:

Total Nitrogen:

TN01: Method of Kjeldahl

Available P:

PH-820:

PH-820:

PH-821:

PH-C21:

PK02:

PH in 1:2.5 soil/water solution

PH-Call:

PC--: Not measured

Electr. conductivity:

CaCO3 content:

Gypsum content:

Gypsum content:

GY01: Dissolved in water and precipitated by acetone CaCO3 content:

Gypsum content:

Gypsum content:

GyO1: Dissolved in water and precipitated by acetone

Exch. Ca, Mg, Na and K:

Exch. acidity and aluminum:

EXCI: Various methods with no apparent differences in results

EXOI: Exchangeable acidity (H+Al) in 1 M KCl

CEC soil:

CSOI: CEC in 1M NH40Ac buffered at pH 7

Effective CEC:

CECI: Sum of exch. Ca, Mg, K and Na, plus exchangeable aluminium (in 1M KCl)

Base saturation:

Base saturation:

Base saturation:

Base saturation:

Base saturation:

BSOI: Sum of bases as percentage of CEC (method specified above)

TECII: Pipette method, with appropriate dispersion treatment (c< 0.002 <si< 0.05 <sa< 2mm)

Bulkdensity:

BDOI: Core sampling (pF rings)

MCOI: sand/silt baths and porous plates, undisturbed samples (pF rings)

Hydraulic conductivity:

HC--: Not measured

BR097 WISE SOIL PROFILE DATA SHEET 21/06/95

SOIL CLASSIFICATION:

FAO-Unesco Legend (1974): FAO-Unesco Legend (1990): Humic Acrisol (Ah) Phase: -- (-) Topsoil texture: fine (F)

Haplic Ferralsol (FRh) Humic Kandiudox

USDA Soil Taxonomy (1994): Local Classification System: [USDA-code: audparh]

SOURCES:

Source_ID: NRCS-USDA Ref. page: SCS profile code 8500725 (Brazil 7)

Descr. status: reference pedon (1) Lab ID: US01

Desc. (MM/YY): 04/85

SITE DATA:

Location:

Highway SP127, Piracicaba-Rio Claro (Brazil)
Lat.: S 22 deg. 34 min. -- sec. Lon.: W 047 deg. 35 min. -- sec. Coordinates:

Altitude: 630 m Landform:

Position: middle slope (MS)

Aspect: 008 % Slope:

well drained (W)
-1 to -1 (cm)
-1 (cm) Drainage class:

Groundwater: Eff. soil depth >

Parent material: Koppen climate: Slate, phyllite (peliticrocks) (MB1) (Remarks: Reworked pelitic colluvium from argillites/shales) Humid subtrop. with dry period in low-sun season (Tcm > OC; Twm > 22C) (Caw)

perennial field cropping (AP) Land use (LU):

Main crop: Vegetation (VE): sugarcane (SC) evergreen forest (FE)

Remarks on LU/VE:

HORIZON DATA:

Horiz.	Depth	Org.	Tot N	. Av.		Нq		ECx	CACO	GYPS UM		Exc	h. bas	es and	acidi	ty	CEC	ECEC	BS
Desig.	(cm)	(%)	(%)	-	H20	KCl	CaCl	2	(%)	(%)	Ca	Mg	K	Na	Ac	Al	(me	q/100g) (%)
Ap1	0- 11		0.35		6.1			-1.00	-1.0	-1.0	18.1	2.3	1.0	-1.0	10.6	0.1	17.7	-1.0	-1
Ap2	11- 19							-1.00		-1.0	6.8		0.5		11.4		11.6		
Bto1	19- 43	1.15						-1.00	-1.0	-1.0	2.1	0.8	0.1		11.2	1.1		-1.0	
Bto2	43- 78							-1.00		-1.0	0.9				10.9	1.2		-1.0	
Bo1	78-190	0.47	0.04	-1.0	5.2	4.5	4.5	-1.00	-1.0	-1.0	0.2	0.2	-1.0	-1.0	10.1	0.4	5.9	-1.0	9
Bo2	190-290	0.25	-1.00	-1.0	5.3	4.4	4.4	-1.00	-1.0	-1.0	0.2	0.1	-1.0	-1.0	7.9	0.7	5.7	-1.0	7
BC	290-320	0.18	0.02	-1.0	5.2	4.0	4.2	-1.00	-1.0	-1.0	-1.0	0.2	-1.0	-1.0	8.8	2.6	6.8	-1.0	3

Horiz.	Colo	ur	M	R	ST	Sand (%)	Silt	Clay	GR (%)	Bd		% V	rol/v	ol m	oist	ure	held	l at	a pl	F of		AWC	HCs	HCu
Desig.	Dry	Moist				(6)	(6)	(6)	(6)		0.0	1.0	1.5	1.7	2.0	2.3	2.5	2.7	3.4	3.7	4.2	(60/0)	(Cil	n/hr)
Ap1	5YR3/3	5YR3/3		CM	GR	18	21	61	-1	-1.0	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	22	-1	-1.0	-1.0
Ap2	5YR4/4	2.5YE3/6	; -	CM	SB	17	16	67	-1	1.48	-1	-1	-1	-1	30	-1	29	-1	-1	-1	21	9	-1.0	-1.0
Bto1	2.5YR5/6	2.5YR3/6	; -	CM	SB	11	12	77	-1	1.39	-1	-1	-1	-1	33	-1	32	-1	-1	-1	25	8	-1.0	-1.0
Bto2	2.5YR5/6	2.5YR4/6	; -	CM	SB	11	13	76	-1	1.16	-1	-1	-1	-1	36	-1	34	-1	-1	-1	26	10	-1.0	-1.0
Bo1	2.5YR4/6	2.5YR4/6	; -	F	GR	12	15	73	-1	1.22	-1	-1	-1	-1	36	-1	33	-1	-1	-1	26	10	-1.0	-1.0
Bo2	2.5YR5/6	10R4/6	-	F	-	15	23	62	-1	-1.0	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	26	-1	-1.0	-1.0
BC	10YR5/6	10R5/6	-	F	-	14	34	52	-1	-1.0	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	27	-1	-1.0	-1.0

Abbr.: Av. P as mg P205/kg soil; ECx= electrical conductivity in dS/m; Ac= exchangeable (H + Al) in meq/100g; BS= base saturation (% of CEC); M= mottles; R= roots; ST= structure; GR = \$ > 2mm size; Bd= bulk density (g/cm3); HC= hydr. conduct., saturated (HCs) resp. unsat. (HCu) in cm/hr; AWC= av. moisture in v/v %; -1 stands for missing numeric values and - for missing alphanumeric values.

REMARKS:

None.

REFERENCES:

a) Source of profile data [NRCS-USDA]:

Soil Survey Staff (Dr J.M. Kimble; FAO class. by Dr O.C. Spaargaren), 1994. Collection of profiles derived from data-tape provided by SCS laboratory (now NRCS) at Lincoln, NE. Soil Taxonomy ('75, '90, '94)

ISRIC Work. Pap. 95/10b

b) Laboratory name and methods [US01]:
Soil Conservation Service (now NRCS), Lincoln, Nebraska

Appendix 4. Brief installation procedure

Installing WISE

The "international profile data set" is distributed mainly as "e-mail attachments". The WISE 2.1 data handling system and "international profile data set" can be installed on IBM-compatible PC's (386 and up). The installation procedure must start from within the directory to which the installation files were transferred initially as e-mail attachments. The relevant files are WISSETUP.BAT and WISSETUP.ZIP. A shareware copy of PKZIP#, which is necessary to decompress WISSETUP.ZIP, is attached also.

To install the data set and data handling system from the DOS prompt (or with RUN option under WINDOWS) simply start in the directory where your e-mail files arrive (e.g. C:\E_MAIL):

C:\E_MAIL> WISSETUP

WISSETUP.BAT first creates C:\WISE, with appropriate subdirectories, to which the various program, system and data files will be copied. In order to access the data a copy of the proprietary dBASE IV language, version 1.5 and up, is needed. The datafiles proper however, being dbf-files, can be accessed with a range of software.

Prior to accessing the data set, a PATH must be set to the directory where dBASE IV resides on the C-drive (C:\DB4), as well as a path to C:\WISE, by adding the following statements to the AUTOEXEC.BAT file on the C-drive, e.g.:

PATH C:\; C:\DOS;; C:\DB4; C:\WISE; ..

The WISE data handling system was developed using dBASE IV, version 1.5. Please note that if version 2.0 of dBASE IV is used, the file C:\DB4\CONFIG.DB must be edited to include the following line:

LDCHECK = OFF

Once the above operations have been performed, the system must be re-booted so that the new path-configuration becomes operational.

At this stage the WISE 2.1 data handling system and "international profile data set" can be accessed by entering:

WISE

Full data base structure definitions, indexing conventions, and coding conventions may be found in Appendix 5 to 7 (from Batjes, 1995).

Appendix 5. Structure and attributes of WISE database files

A) WISE database files

Structure for database: WISESITE.DBF

Field Name	Type V	Vidth Dec	Description
WISE_ID	Character	5	Unique profile reference number
LAB_ID	Character	4	Unique laboratory reference number
SOURCE_ID	Character	10	Unique reference number for source of profile data
REFPAG	Character	50	Profile/page reference in source
HORNUM	Numeric	1	Number of horizons described for pit (Y/N,
			control variable)
FAO_74	Character	2	FAO-Unesco (1974), classification as code
PHA_74	Character	2	As above, but code for (main) phase
TOP_74	Character	1	As above, but code for topsoil textural class
FAO_90	Character	3	FAO-Unesco (1990), classification as code
PHA_90	Character	2	As above, but code for (main) phase
USCL	Character	50	USDA Soil Taxonomy classification, descriptive
USYR	Character	2	Year (version of Soil Taxonomy, e.g., 75, 94)
LOCAL	Character	50	Local classification, descriptive
DESCR	Character	1	Profile description status, code
DATE	Character	5	Date profile was first described
COUN	Character	2	ISO code for country of origin
LOCAT	Character	50	Location of profile, descriptive
LATIT	Character	1	Latitude of profile (N/S)
LATDEG	Character	2	degrees
LATMIN	Character	2	minutes
LATSEC	Character	2	seconds
LONGI	Character	1	Longitude of profile (E/W)
LONDEG	Character	3	degrees
LONMIN	Character	2	minutes
LONSEC	Character	2	seconds
ALTIT	Numeric	4	Elevation (m)
LFORM	Character	2	Landform, code
POSIT	Character	2	Position, code
ASPECT	Character	3	Aspect, code
SLOPE	Character	3	Slope at profile site (%)
DRAIN	Character	2	Drainage condition, code
GRWHI	Numeric	4	Average, highest groundwater level (cm)
GRWLO	Numeric	4	Average, lowest groundwater level (cm)
SOLDEP	Numeric	4	Average, soil depth to a physically limiting layer (cm
PARMAT	Character	3	Parent material, code
PARREM	Character	50	Remarks on parent material, descriptive
KOPPEN	Character	3	Köppen climate classification, code
LANDUS	Character	3	Land use, code
CROPS	Character	2	Crops, code
VEGCOD	Character	2	Vegetation, code
VEGREM	Character	100	Remarks on either land use or vegetation, descriptive
REMARKS	Character	5	Data entry source code
		-	,

Structure for database: WISEHOR.DBF

Field Name	Type W	Vidth	Dec	Description
WISE_ID	Character	5		Unique soil profile number
HORIZ	Character	1		Unique horizon number (in combination with WISE_ID
DESIG	Character	8		Horizon designation, coded acc. to local system
TOPDEP	Numeric	3		Upper depth of horizon (cm)
BOTDEP	Numeric	3		Lower depth of horizon (cm)
DCOLOR	Character	8		Dry matrix colour, Munsell code
MCOLOR	Character	8		Moist matrix colour, Munsell code
MOTTLE	Character	1		Mottling, code
ROOTS	Character	2		Roots abundance/size, code
ORGC	Numeric	5	2	Org. carbon (%, for method see keymethod.dbf)
TOTN	Numeric	5	2	Total Nitrogen (%)
PTOT	Numeric	5	1	Available phosphorus (mg P_2O_5 kg ⁻¹)
CACO3	Numeric	4	1	Calcium carbonate content (%)
GYPSUM	Numeric	4	1	Gypsum content (%)
PHH2O	Numeric	4	1	pH measured in water
PHKCL	Numeric	4	1	pH measured in KCl solution
PHCACL2	Numeric	4	1	pH measured in CaCl ₂ solution
ECE	Numeric	5	2	Electrical conductivity (dS m ⁻¹ or mmho cm ⁻¹)
EXCA	Numeric	5	1	Exchangeable calcium (cmol(+) kg ⁻¹)
		5		
EXMG	Numeric		1	Exchangeable magnesium
EXNA	Numeric	5	1	Exchangeable sodium
EXK	Numeric	5	1	Exchangeable potassium
EXACID	Numeric	5	1	Exchangeable acidity
EXALUM	Numeric	5	1	Exchangeable aluminum
CECSOIL	Numeric	5	1	Cation exchange capacity (cmol(+) kg ⁻¹)
ECEC	Numeric	5	1	Effective CEC (cmol(+) kg ⁻¹ ; 1 <i>M</i> KCl)
BSAT	Numeric	3		Base saturation, expressed as % of CEC
SAND	Numeric	2		Sand content (w/w%)
SILT	Numeric	2		Silt content (w/w%)
CLAY	Numeric	2		Clay content (w/w%)
GRAVEL	Numeric	2		Gravel content (v/v %)
STRUCT	Character	2		Soil structure, code
BULKDENS	Numeric	5	2	Bulk density (g cm ⁻³)
PF	Character	1		Soil moisture content (Y/N, control variable)
PF00	Numeric	2		Soil moisture content (% v/v) held at pF 0
PF10	Numeric	2		As above, but at pF1.0
PF15	Numeric	2		As above, but at pF1.5
PF17	Numeric	2		As above, but at pF1.7
PF20	Numeric	2		As above, but at pF2.0
PF23	Numeric	2		As above, but at pF2.3
PF25	Numeric	2		As above, but at pF2.5
PF27	Numeric	2		As above, but at pF2.7
PF34	Numeric	2		As above, but at pF3.4
PF37	Numeric	2		As above, but at pF3.7
PF42	Numeric	2		As above, but at pF4.2
AWC	Numeric	2		Available water capacity
HC	Character	1		Hydraulic conductivity (control variable)
CONDSAT	Numeric	4	1	Saturated conductivity (cm hr ⁻¹)
CONDUNSAT		4	1	Unsaturated conductivity (cm hr ⁻¹)
201.120110111	_ ,	-	1	(on in)

Structure for database: WISEANAD.DBF

Field Name	Type W	Vidth Dec	Description
WISE_ID	Character	5	Unique profile number
ADD	Character	254	Remarks on profile, descriptive

Structure for database: WISESOUR.DBF

Field Name	Type Width	Dec Description
SOURCE_ID	Character 10	Unique reference number for source of profile data
AUTHOR	Character 70	Author name and initials
AUTYR	Numeric 2	Year of publication
REFTIT	Character 100	Title of monograph/database, descriptive
REFPUB	Character 100	Series/publisher/year, descriptive

Structure for database: WISELAB.DBF

Field Name	Type Width De	c Description
LAB_ID	Character 4	Unique laboratory code
LABNAM	Character 150	Reference to laboratory, descriptive

${\bf Structure\ for\ database:\ WISEATRIB.DBF}$

Field Name	Type W	idth Dec	Description
LAB_ID	Character	4	Unique laboratory code
ORGC	Character	2	Number-code of analytical method (KEYMETHO.DBF)
TOTN	Character	2	As above, but for total nitrogen
PTOT	Character	2	As above, but for 'available' phosphorus
CACO3	Character	2	As above, but for calcium carbonate content
GYPSUM	Character	2	As above, but for gypsum content
PHH2O	Character	2	As above, but for pH-water
PHKCL	Character	2	As above, but for pH-KCl
PHCACL2	Character	2	As above, but for pH-CaCl ₂
ELECON	Character	2	As above, but for electrical conductivity
EXBAS	Character	2	As above, but for exchangeable Ca, Mg, K and Na
EXACID	Character	2	As above, but for exchangeable acidity
CECSOIL	Character	2	As above, but for CEC
ECEC	Character	2	As above, but for ECEC
BSAT	Character	2	As above, but for base saturation
TEXTURE	Character	2	As above, but for texture (definition of esd-sizes + method
BULKDENS	Character	2	As above, but for bulk density
MOISTCON	Character	2	As above, but for moisture content (pF measurements)
HYDROCON	Character	2	As above, but for hydraulic conductivity

B) Key-description conversion files

Structure for database: KEYAREA.DBF

Field Name	Type Width Dec	Description
KEY	Character 2	Unique identifier for broad geographic area (e.g., AF for Africa)
REGION	Character 150	Description of broad geographic area

Structure for database: KEYCOUN.DBF

Field Name	Type Widt	h Dec	Description
ISO COUNTRY REGION	Character Character 2 Character	2 0 2	Country ISO code Country name, descriptive Unique identifier for broad geographic area

Structure for database: KEYCROPS.DBF

Field Name	Type Width Dec	Description
KEY	Character 2	Arable crops, code
CROPS	Character 25	As above, but descriptive

${\bf Structure\ for\ database:\ KEYDRAIN.DBF}$

Field Name	Type V	Width De	c Description
KEY	Character		Soil drainage class, code
DRAIN	Character		As above, but descriptive

Structure for database: KEYFAO.DBF

Field Name	Type W	idth Dec	Description
KEYFAO90	Character	3	FAO-Unesco (1990) Revised Legend, code
FAOUNIT90	Character	20	FAO-Unesco (1974) Legend, code
KEYFAO74	Character	2	FAO-Unesco (1990) classification, descriptive
FAOUNIT74	Character	20	FAO-Unesco (1974) classification, descriptive

Structure for databases: C:\WISE\KEYFAO_1

Field Name	Type W	idth Dec	Description
KEYFAO74	Character	2	FAO-Unesco (1974) Legend, 1st level codes only
FAOUNIT74	Character	20	FAO-Unesco (1974) Legend, descriptive

Structure for database: KEYKOPPE.DBF

Field Name	Type Width I	ec Description
KEY KOPPEN	Character 4 Character 115	Unique identifier for Köppen climate code (e.g., Aw Summary description of Köppen climate

Structure for database: KEYLANDF.DBF

Field Name	Type V	Width Dec	Description
KEY LFORM	Character Character		Landform, code As above, but descriptive

Structure for database: KEYLUS.DBF

Field Name	Type Width Dec	Description
KEY LANDUS	Character 3 Character 45	Land use, code As above, but descriptive

Structure for database: KEYMETHOD.DBF

Unique identifier code (such as "OC"+"01") Summary description of laboratory method

Structure for database: KEYMOTTL.DBF

Field Name	Type Wide	th Dec	Description
KEY MOTTLE	Character Character 2	1 20	Soil mottling, code As above, but descriptive

Structure for database: KEYPAREN.DBF

Field Name	Type Width Dec	Description
KEY PARMAT	Character 3 Character 50	Parent material, code As above, but descriptive

Structure for database: KEYPH74.DBF

Field Name	Type Width Dec	Description
KEY	Character 2	Code for FAO-Unesco (1974) phase
PHA_74	Character 15	As above, but descriptive

Structure for database: KEYPH90.DBF

Field Name	Type Width Dec	Description
KEY	Character 2	Code for FAO-Unesco (1990) phase
PHA_90	Character 15	As above, but descriptive

Structure for database: KEYPOSIT.DBF

Field Name	Type	Width Dec	Description
KEY POSITI	Character Character		Site position, code As above, but descriptive

Structure for database: KEYREGION.DBF

Field Name	Type Width Dec	Description
ISO COUN REGION	Character 2 Character 20 Character 2	Country ISO code Country name, descriptive Code for broad region (see KEYAREA.DBF)

Structure for database: KEYROOTS.DBF

Field Name	Type Width Dec	Description
KEY	Character 2	Roots abundance and size, code
ROOTS	Character 40	As above, but descriptive

Structure for database: KEYSTATU.DBF

Field Name	Туре	Width	Dec	Description
KEY DESCR	Character Character			Profile description status, code As above, but descriptive

Structure for database: KEYSTRUC.DBF

Field Name	Type Width Dec	Description
KEY STRUCT	Character 2 Character 30	Soil structure, code As above, but descriptive

Structure for database: KEYTEXT.DBF

Field Name	Type Width Dec	Description
KEY	Character 1	FAO-Unesco (1974) topsoil texture class, code
TOP_74	Character 15	As above, but descriptive

Structure for database: KEYVEGET.DBF

Field Name	Type Width Dec	Description
KEY	Character 2	Vegetation classification, code
VEGCOD	Character 30	As above, but descriptive

${\bf Structure\ for\ database:\ WIS_EXTE.DBF}$

Field Name	Type	Width	Dec	Description
FIELD_NAME	Character	10		Name of field
FIELD_TYPE	Character	1		Type of field (C, N, L)
FIELD_LEN	Numeric	3		Length of field
FIELD_DEC	Numeric	3		Decimal places
FIELD_IDX	Character	1		Index

Appendix 6. WISE 2.1 database coding protocols

A -- SITE ATTRIBUTES

WISE_ID:

Unique reference number for the soil profile in question, which consists of the country's ISO-3166 code (see Appendix 7) followed by 3 numbers (Example: BR022).

FAO-Unesco classification (1974):

Classification of profile according the 1 or 2 letter codes used in the Key to Soil Units (FAO-Unesco, 1974 p. 43-53), for example E for a Rendzina and Ge for an Eutric Gleysol. A thorough classification is crucial, because the code provides the main "key" for linking the profile data to the spatial database.

FAO-Unesco phase (1974, p. 5-7):

The main phase, specified using the codes presented below:

ST	stony
PE	petric
MK	petrocalcic
LI	lithic
MY	petrogypsic
PH	phreatic
X	fragipan
MQ	duripan
Z	saline
SO	sodic
CE	cerrado
MS	petroferric

Topsoil texture class:

Textural class of the upper 30 cm of the mineral soil (FAO-Unesco, 1974 p. 4-5), specified according to the codes below:

CodeDo	escription	Range in % clay and sand	
C	coarse	< 15% clay* and > 65% sand	-
M	medium	< 35% clay and < 70% sand or	
		\leq 85% clay if clay \geq 15%	
F	fine	> 35% clay	

^{*} Clay, silt and sand-size minerals as used in FAO-ISRIC (1990).

FAO-Unesco classification (1990):

These are to be encoded using the 3-letter codes of the Key to Major Soil Groupings and Soil Units (FAO-Unesco, 1990 p. 74-88), for example, HSf for a Fibric Histosol and ACp for a Plinthic Acrisol.

FAO-Unesco phase (1990, p. 68):

The main phase, specified using the codes presented below:

Codel	Description	Code	Description	
AN	anthraquic	PF	petroferric	
DU	duripan	PH	phreatic	
FR	fragipan	PL	placic	
GE	gelundic	SO	sodic	
GI	gilgai	RU	rudic	
IN	inundic	SA	salic	
SK	skeletic	TK	takyric	
YR	yermic	LI	Lithic	

USDA Soil Taxonomy:

The classification is to be specified at the subgroup level, as a text string with a maximum length of 50 characters (see Soil Survey Staff, 1994; abbreviate if necessary).

Version of USDA Soil Taxonomy:

Two characters indicating the version/year of USDA Soil Taxonomy (e.g., 75, 87, 90, 94).

Local soil classification:

The classification according to the National System, up to a maximum of 50 characters (abbreviate if necessary).

SOURCE_ID:

The unique SOURCE_ID provides an alphanumeric reference to the source from which the soil profile data were derived, for example a soil monograph or digital database. The format is free, provided the total length is less than 10 characters (e.g., AF5/34.1 for a source from the ISRIC library).

Ref. in source:

The page and number of the profile in the source represented by SOURCE_ID.

LAB_ID:

This unique code provides an alphanumeric reference to the laboratory where the measurements have been made. The LAB_ID consists of the country's ISO-code, followed by two numbers (Example: IN02). Further information on the analytical procedures that have been used to measure a certain attribute can be described on Form C, using the coding system held in the KEYMETHO.DBF database file.

Soil profile description status:

This code refers to the completeness of the soil descriptions and analytical data for the specified profile. The description status is determined after screening of the original profile description and the analytical data for possible inconsistencies. It may be seen as an indicator of the (likely) accuracy and reliability of the data shown. The following distinctions are made (modified after FAO-ISRIC, 1990).

Code	Description
1	ISIS or other Reference Pedon Description (additional information is provided under the heading SOURCE_ID).
2	Routine profile description in which no essential data are lacking from the description, sampling or analysis. The data give a good indication of the nature of the soil in the FAO-Unesco (1974) Legend.
3	Incomplete description in which certain relevant elements are missing from the description, an insufficient number of samples collected, or the reliability of the analytical data do not permit a complete characterization of the soil. The description is however useful for specific purposes and provides a satisfactory indication of the nature of the soil in the FAO-Unesco (1974) Legend.
4	Other descriptions in which essential elements are lacking from the description, preventing a satisfactory soil characterization and classification * .

^{*} Generally not accepted for inclusion in WISE database unless soil unit is grossly under represented in global data set.

Date of description:

The date on which the profile was described, specified as month and year (MM/YY).

Country:

The country where the profile was described, specified according to the ISO-3166 codes (Example: NE for Niger, see Appendix 7).

Location:

Description of general location of profile (e.g., town, province), as text string of maximum 50 characters.

Coordinates of soil profile:

The full coordinates of the soil profile given as degrees, minutes and seconds latitude (N or S) and longitude (E or W). The coordinates can be derived from an appropriately detailed topographical map, and must be accurate to at least 25 km in view of their application in a $\frac{1}{2}$ ° by $\frac{1}{2}$ ° spatial database (A $\frac{1}{2}$ ° by $\frac{1}{2}$ ° degree grid corresponds approximately with 55 x 55 km at the equator). [**Note**: if only deg. min. is given in the database, this indicates the profile coordinates are approximative and derived from the Times Atlas (1993)].

Altitude:

The altitude of the soil profile relative to mean sea level, specified in meters. This information can be derived from a suitably detailed topographical map. (Note: 1 foot = 0.3048 m).

Landform:

This refers to the major landforms, which are described principally by their morphology and not by their genetic origin, or processes responsible for their shape. The first differentiating criterion is the dominant slope, followed by relief intensity as used in the SOTER manual (Van Engelen and Wen, 1993 p. 24-25):

Code	Landform	Description
L	Level land	Land with characteristic slopes of 0-8 %, and a relief intensity of less than 100 m per km.
S	Sloping land	Land with characteristic slopes of 8-30 % and a relief intensity of more than 50 m per slope unit. Areas with a limited relief intensity (< 50 m per slope unit) but slopes in excess of 8% are included, as are isolated mountains (relief intensity > 600 m) with slopes of 8-30 %.
T	Steep land	Land with characteristic slopes of over 30 % and a relief intensity of mostly more than 600 m per 2 km.
С	Land with com- posite landforms	Land made up of steep elements together with sloping or level land, or sloping land with level land, in which at least 20 % of the area consists of land with the lesser slope.

Codes for second level major landforms are used in the WISE database. The initial breakdown of major landforms is made according to the procedures of the SOTER Manual:

First level		Second level	Gradient	Relief intensity
L Level land	LP	plain	0-8%	< 100 m/km
	LL	plateau	0-8%	< 100 m/km
	LD	depression	0-8%	< 100 m/km
	LF	low-gradient footslope	0-8%	< 100 m/km
	LV	valley floor	0-8%	< 100 m/km
S Sloping land	SM	medium-gradient mountain	15-30%	> 600 m/2km
1 8	SH	medium-gradient hills	8-30%	> 50 m/s.u.
	SE	medgradient escarpment zone	15-30%	< 600 m/2km
	SR	ridges	8-30%	> 50 m/s.u.
	SU	mountainous highland	8-30%	> 600 m/2km
	SP	dissected plain	8-30%	> 50 m/s.u.
T Steep land	TM	high-gradient mountain	> 30%	> 600 m/2km
1	TH	high-gradient hill	> 30%	< 600 m/2km
	TE	high-grad. escarpment zone	> 30%	> 600 m/2km
	TV	high gradient valleys	> 30%	variable
C Land with composite	CV	valley	> 8%	variable
*	CL	narrow plateau	> 8%	variable
	CD	major depression	> 8%	variable

Note: s.u. stands for slope unit. Where this is not clear from the gradient or relief intensity, the distinction between the various second level major landforms follows from the description.

Landscape position:

The physiographic position of the site where the profile is located, specified according to the following system (FAO-ISRIC, 1990 p. 7).

Code	Description
Positio	n in undulating to mountainous terrain
CR	Crest/top
UP	Upper slope
MS	Middle slope
LS	Lower slope
ВО	Bottom (flat)
Positio	n in flat or almost flat terrain
HI	Higher part
IN	Intermediate part
LO	Lower part
BO	Bottom (drainage line)

Aspect:

The aspect of the site coded using the following format: N, NNE, NE, ENE, E, ..., NNW. In case of flat or almost level land, the aspect is indicated as O (letter) .

Slope gradient:

The slope refers to the inclination of the land immediately surrounding the site. The measured or estimated slope angle is specified to the nearest per cent.

Drainage class:

The internal drainage class is coded according to the conventions of FAO-ISRIC (1990 p. 20). In WISE, intergrades of two neighbouring drainage classes may be indicated by a combination of two codes. For instance "VP", represents a soil with very poor to poor internal drainage.

Code	Description
V	very poorly drained
P	poorly drained
I	somewhat poorly (imperfectly) drained
M	moderately well drained
W	well drained
S	somewhat excessively drained
E	excessively drained
	•

Depth of groundwater table:

The measured or estimated depth to the groundwater table, if present/known, indicating both the mean highest and mean lowest values during the year. Depths are specified in centimetres from the surface. If the water-table always occurs at a great depth, this can by entering similar values for the both the mean high and low values (e.g., 200 cm).

Soil depth to rock:

The average measured or estimated depth, in cm, from the surface to a layer that *physically* precludes the development of most roots. Limitations of a chemical nature, such as high levels of salt/alkali, are not considered under this heading as they are often of a transient nature, being prone to change with agricultural practices.

Parent material/lithology:

The main parent rock/material over which the soil has been formed is coded using the categories considered in the SOTER manual and FAO-ISRIC (1990, p. 14). Additional codes, introduced in the context of the WISE project, and are indicated by an asterisk:

Major class		Group		Туре
I Igneous rocks	IA	acid igneous	IA2 IA3	granite grano-diorite quartz-diorite rhyolite
	II	intermediate igneous		andesite, trachyte, phonolite diorite-syenite
	IB	basic igneous	IB2	gabbro basalt dolerite
	IU	ultrabasic igneous	IU2	peridotite pyroxenite ilmenite, magnetite, ironstone, serpentine
M Metamorphic rocks	MA	acid metamorphic	MA2 MA3*	quartzite gneiss, migmatite slate, phyllite schists
	МВ	basic metamorphic	MB2 MB3	slate, phyllite (pelitic rocks) schist gneiss rich in ferro-magn. min. metamorphic limestone (marble)
S Sedimentary rocks	SC	clastic sediments	sc2 sc3	conglomerate, breccia sandstone, greywacke, arkose siltstone, mudstone, claystone shale
	so	organic	SO2	limestone, other carb. rocks marl and other mixtures coals, bitumen and rel. rocks
	SE	evaporites		anhydrite, gypsum halite

(Parent material/lithology cont.)

Major class	Gi	Group Type		
U Unconsolidated	UF UM UC UE UG UP UO UX*	fluvial lacustrine marine colluvial eolian glacial pyroclastic organic soft laterite and ferruginous materials hardened laterite and ferruginous materials		

^{*} Additional, tentative codes

Remarks on parent material/lithology:

When necessary, additional remarks about the parent material can be specified as text on the proforma, with a maximum length of 50 characters.

Köppen climate classification:

The climate at the site is classified according to the Köppen system which considers precipitation effectiveness for plant growth as the major classification factor, and uses the appropriate seasonal values of temperature and precipitation to determine the limits of climatic groupings. The Köppen system figures a shorthand code of letters designating major climate groups, subgroups within these major groups, with further subdivisions to distinguish particular seasonal characteristics of temperature and precipitation (adapted from Strahler, 1969 p. 224; Times Atlas, 1993).

a) Major climate groups

The following major climate groups are considered:

Code	Classification and description
A	Tropical (rainy) climates: Average temperature of every month is above 18 °C. These climates have no winter season. Annual rainfall is large and exceeds annual evaporation.
В	Dry: Potential evaporation exceeds precipitation on the average throughout the year. No water surplus; hence no permanent streams originate in B climate zones.
C	Warm temperate (mesothermal) climates: Coldest month has an average temperature under 18 °C, but above -3 °C. The C climates thus have both a summer and a winter season.
D	Snow (microthermal) climates: Coldest month average temperature under -3 °C. Average temperature of the warmest month above 10 °C, that isotherm corresponding approximately with pole-ward limit of forest growth.
E	Ice climates: A polar climate type with average temperature in no month averaging over 10 °C. These climates have no true summer
Н	Mountain/Highland climates

b) Subgroups

Subgroups within the major climate groups are designated by a second letter according to the following code:

Code	Description
S*	Steppe climate, a semiarid climate with about 380 to 760 mm of rainfall annually at low latitudes.
W	Desert climate. Arid climate. Most regions included have less than 250 mm of rainfall annually.
f	Moist. Adequate precipitation in all months. No dry season. This modifier is applied to major climate types A, C and D.
W	Dry season in winter of the respective hemisphere (low-sun season)
s	Dry season in summer of the respective hemisphere (high-sun season)
m	Rainforest climate despite a short dry season in monsoon type of precipitation cycle. Applies only to A climates.

* The letters S and W are applied only to the dry climates (i.e., BS and BW).

From combinations of the two letter groups, 12 distinct climates emerge as follows:

Code	Description
Af	Tropical rainforest (also Am a variant of Af)
Aw	Tropical savanna
BS	Steppe climate
BW	Desert climate
Cw	Temperate rainy (humid mesothermal) climate with dry winter
Cf	Temperate rainy (humid mesothermal) climate moist all seasons
Cs	Temperate rainy (humid mesothermal) climate with dry summer
Df	Cold snowy forests (humid microthermal) climate moist in all seasons
Dw	Cold snowy forest (humid microthermal) climate with dry winter
ET	Tundra climate
EF	Climates of perpetual frost (ice-caps)
Н	Mountain/Highland climates (undifferentiated)

c) A third letter may be added to differentiate still more variations. Meanings are as follows:

Code	Description
a	With hot summer; warmest month over 22 °C (C and D climates)
b	With warm summer; warmest month below 22 °C (C and D climates)
c	With cool, short summer; fewer than four months over 10 °C (C and D climates)
d	With very cold winter; coldest months below - 38 °C (D climates only)
h	Dry-hot; mean annual temperature over 18 °C (B climates only)
k	Dry-cold; climates annual temperature under 18 °C (B climates only).

The unique, Köppen codes allowed in WISE are listed in file KEYKOPPE.DBF. For example BWk, which refers to a dry-cold, desert climate.

Current land use:

The current land use at the site is coded using the classes given by FAO-ISRIC (1990 p. 13), as below:

Co	de	Descrip	otion	Co	ode	Description
S	Settl SR SI ST SC SX	Reside Industr Transp	tional use	Н	Anir HE	mal Husbandry Extensive grazing HE1 Nomadism HE2 Semi-nomadism HE3 Ranching Intensive grazing
	БA	LACAVA	ations		HI1	6 6
Α	Cro	p Agricı	ılture		HI2	
	AA	Annua AA1 AA2 AA3 AA4 AA5 AA6	I field cropping Shifting cultivation Fallow system cult. Ley system cult. Rainfed arable cult. Wet rice cultivation Irrigated cultivation	F	Fore FN FP	Natural forest and woodland FN1 Selective felling FN2 Clear felling Plantation forestry
	AP AT	Perenn AP1 AP2	ial field cropping Non-irrigated cult. Irrigated cult. and shrub cropping Non-irr. tree crop cult.	M	Mixo MF MP	ed farming Agro-forestry Agro-pastoralism (cropping and livestock systems)
		AT2 AT3	Irrigated tree crop cult. Non-irrigated shrub crop cultivation Irrigated shrub crop	E	Extr EV EH	action and Collection Exploitation of natural vegetation Hunting and fishing
		7114	cultivation	P	Natu PN PD	Nature and game reserve PN1 Reserves PN2 Parks PN3 Wildlife management Degradation control PD1 Without interference PD2 With interference
				U	Not	Used and Not Managed

Main corp (for arable uses):

The dominant crop is coded using the following list (adapted from FAO-ISRIC, 1990).

Code	Crop	Code	Crop	Code	Crop
BA	Barley	FR	Fruit trees	SO	Sorghum
BE	Beans	GR	Groundnut	SB	Soybean
CH	Cashew	MA	Maize	SC	Sugar cane
CA	Cassava	MI	Millet	SF	Sunflower
CO	Cocoa	OL	Oil/protein crops	SI	Sisal
CN	Condiments	OP	Oil palm	SP	Sweet potato
CC	Coconut	PE	Peas	SU	Sugar beet
CE	Cereals (unsp.)	PO	Potato	ST	Stimulants (unsp.)
CF	Coffee	RI	Rice	TC	Tuber crops (unsp.)
CT	Cotton	RB	Rice (flooded)	TE	Tea
CP	Cowpea	RT	Root crops (unsp.)	TB	Tobacco
FB	Fibre crops	RU	Rice (upland)	VE	Vegetables
FD	Fodder crops	RR	Rubber	WH	Wheat
	- -			YA	Yams

Vegetation:

The natural vegetation at a site is described using the broad classes given by Unesco (1973), conforming with the coding conventions of SOTER:

Co	de	Description	Code	Description
F	Close	ed Forest	D Dw	arf scrub
	FE	Evergreen forest	DE	Evergreen dwarf shrub
	FS	Semi-deciduous forest	DS	Semi-deciduous dwarf shrub
	FD	Deciduous forest	DD	Deciduous dwarf shrub
	FX	Xeromorphic forest	DX	Xeromorphic dwarf shrub
		•	DT	Tundra
W	Wood	dland		
	WE	Evergreen woodland	Н Не	rbaceous
	WS	Semi-deciduous wood.	HT	Tall grassland
	WD	Deciduous woodl.	HM	Medium grassland
	WX	Xeromorphic woodl.	HS	Short grassland
		•	HF	Forb
\mathbf{S}	Scrul	b	HE	* Hydromorphic vegetation
	SE	Evergreen shrub		
	SS	Semi-deciduous shrub		
	SD	Deciduous shrub		
	SX	Xeromorphic shrub		

^{*} New code

Remarks on land use or vegetation:

Additional remarks, for instance about the crop rotation or felling history, can be entered as text with a maximum length of 100 characters.

Number of horizons:

This refers to the total number of horizons for which analytical data are available. The maximum number of horizons that can be accommodated per profile in the database is 9. However, physically, there is only place for 6 horizons on each data entry sheet.

B-HORIZON ATTRIBUTES

Horizon number:

This number is automatically created by the WISE input module. Data for the main horizons must be entered from the surface downwards. If more than 9 soil horizons are described in the original source, it may be necessary to 'regroup' this information to a smaller number. This should only be done for the subsoil, for example, by averaging numeric data for similar horizons such as a Btg1 and Btg2.

Horizon designation:

Whenever possible, the horizon designation should be given according to the terminology of FAO-ISRIC (1990).

Top (upper) depth:

Upper depth of horizon (cm). In case of a litter layer, use negative numbers (e.g., top depth of -20 cm to bottom depth of 0 cm). If the original depth of a horizon is given as e.g. 30/40 cm, the horizon depth is entered as (30+40)/2=35 cm.

Bottom (lower) depth:

Lower depth of horizon (cm). If the lower depth of a profile is not indicated and analytical data are available for the last horizon, the assumption is that this horizon is 15 cm thick. For example, 75⁺ cm would imply a lower depth of 90 cm.

Organic carbon:

Organic carbon (% by weight) is specified with 2 decimal places. The code for the measurement method is to be specified separately on Form C. [Note: The codes for the analytical methods are held in KEYMETHO.DBF. The list of codes will grow as new analytical procedures are encountered during data collection. The most recent list can be printed with option <6> of the selection menu of WISE (see Section 4.5)].

Total Nitrogen:

Total nitrogen (% by weight) is rounded to 2 decimal places. The code for the measurement method is to be specified separately on Form C (see KEYMETHO.DBF).

Available P:

Available (extractable) P content, by weight, in mg P_2O_5 kg⁻¹ soil. The code for the measurement method is to be specified separately on Form C (see KEYMETHO.DBF).

$pH-H_2O$:

Measured in water at a soil:water ratio which is to be specified in the 'analytical methods' key-file. One decimal is adequate.

pH-KCL:

Measured in 1 *M* KCl solution at the soil:solution ratio specified with the data. The code for the measurement method is to be specified separately on Form C (see KEYMETHO.DBF).

pH-CaCl₂:

Measured in 1 *M* CaCl₂ solution at the soil:solution ratio specified with the data. The code for the measurement method is to be specified separately on Form C (see KEYMETHO.DBF).

Electrical conductivity (EC):

Specify the EC for the horizon, indicating the soil:water ratio. The unit used is mS cm⁻¹ or dS m⁻¹, originally mmho cm⁻¹, at 25 °C. The code for the measurement method is to be specified separately on Form C (see KEYMETHO.DBF).

$CaCO_3$:

Total CaCO₃ content (% by weight) is rounded off to the nearest integer. The code for the measurement method is to be specified separately on Form C (see KEYMETHO.DBF).

$CaSO_{4}$:

Total gypsum ($CaSO_4.2H_2O$) content, by weight %, is rounded off to the nearest integer. The code for the measurement method is to be specified separately on Form C (see KEYMETHO.DBF).

Exchangeable bases (Ca^{2+} , Mg^{2+} , K^+ and Na^+):

To be specified in cmol(+) kg⁻¹, using 1 decimal. The code for the measurement method is to be specified separately on Form C (see KEYMETHO.DBF).

Exchangeable acidity (Al^{3+} and H^{+}):

Obtained with a percolation of a soil sample with a 1 M KCl solution. Exchangeable acidity is measured by titration of the percolate, and exchangeable aluminum is determined separately in the percolate. Exchangeable acidity is specified in cmol(+) kg⁻¹, using 1 decimal. [**Note**: Values for exchangeable acidity, determined in 1 M KCl percolate, and extractable acidity, equilibrated with a BaCl₂-TEA buffer at pH 8.2, refer to different measurement methods!]

Exchangeable aluminum (Al^{3+}) :

Exchangeable aluminum, in cmol(+) kg⁻¹, as determined separately in the percolate described above.

Cation exchange capacity (CEC):

CEC is given in cmol(+) kg⁻¹, using 1 decimal, according to the method specified on Form C.

Effective cation exchange capacity (ECEC):

ECEC is determined by summation of exchangeable bases and exchangeable acidity, and expressed in cmol(+) kg^{-1} using 1 decimal (i.e., ECEC= Exch[Ca²⁺ + Mg²⁺ + K⁺ + Na⁺] +

 $Exch[H^+ + Al^{3+}]$). [**Note**: The above definition is used in the WISE database to conform with the definition of the ISRIC laboratory (Van Reeuwijk, 1990, p. 11.1)].

Base saturation (BS):

Specified as nearest integer, and calculated as sum of exchangeable cation bases (Ca^{2+} , Mg^{2+} , K^+ and Na^+) divided by the CEC, measured with the specified CEC method, times 100%.

Matrix colour, dry:

The dry colour is specified using the Munsell Colour Charts. Colour codes have the general form: hue, value, chroma (e.g., 5YR5/3). All "complex" Munsell codes must be rounded off. For example, 10YR3.5/1 would become 10YR4/1.

Matrix colour, moist:

The moist colour is specified using the Munsell Colour Charts (e.g., 5YR3/2).

Mottling:

Mottling in a horizon is characterized by its abundance (after FAO-ISRIC, 1990 p. 42).

Code	Description	% of occurrence
N	none	positive statement
V	very few	0-2 %
F	few	2-5 %
C	common	5-15 %
M	many	15-40 %
A	abundant	> 40 %

Roots:

The presence of roots is described using a two character code (FAO-ISRIC, 1990 p. 63). The first letter of this code refers to the overall size of the roots, and the second letter to their abundance (e.g., MC stands for many coarse roots).

- Abundance of roots (expressed as number of roots per square decimeter):

Code	Quantity	Description
0	no roots	0
V	very few	1-20
F	few	20-50
C	common	50-200
M	Many	> 200
	•	

- Description of root sizes:

Description	Diameter (mm)
very fine	< 0.5 mm
fine	0.5-2 mm
medium	2-5 mm
coarse	> 5 mm
all	very fine roots to coarse
	very fine fine medium coarse

Soil structure:

The type of soil structure is described according to the classes of FAO-ISRIC (1990 p. 51):

Code	Description of class	Code	Description
SG	single grain	AS	angular and subangular blocky
MA	massive	SA	subangular and angular blocky
CR	crumb	SN	nutty subangular blocky
GR	granular	AW	angular blocky wedge-shaped
PR	prismatic	AP	angular blocky parallelepiped
PS	subangular prismatic	PL	platy
CO	columnar	RS	rock structure
AB	angular blocky	SS	stratified structure
SB	subangular blocky		

Particle size distribution:

The particle size distribution refers to the fine earth fraction only (< 2 mm). The weight percentages of sand-, silt- and clay-size materials are given as integers. The analytical procedure and 'esd' or equivalent spherical diameter for the clay-, silt-, and sand-size fractions must be documented on Form C. For example: pipette method, full dispersion; esd: <2 μ m, < 50 μ m and < 2 mm.

Stone and gravel content:

Give a visual estimate of the percentage of large rock and mineral fragments with a diameter larger than 2 mm, rounded off to the nearest 5 per cent.

Bulk density:

Bulk density (oven dry sample) is given as g cm⁻³, using two decimals.

Soil water retention:

The *volume* percentage of water (MC) in the soil horizon, at the considered pF-values (i.e., 0.0, 1.0, 1.5, 1.7, 2.0, 2.3, 2.5, 2.7, 4.3, 3.7 and 4.2; see WISEHOR.DBF p. 27), is to be specified as an integer. The moisture content is expressed on a percent by volume basis:

MC (% by volume v/v) = MC (% by weight w/w) x bulk density (kg m⁻³)

Selected pF-values or suctions, at which the soil water retention measurements were made, can be entered on the data entry sheet. (Indicate which pF values are considered to correspond with the Field Capacity and the Permanent Wilting Point so that the Available Water Capacity (AWC) can be calculated). [*Note*: pF is the \log_{10} [head(cm of water)], i.e. a head of 100 cm of water corresponds with a pF of 2.0. (1 bar = 1017 cm of water = 100 kPa = 0.987 atmosphere)]

Hydraulic conductivity:

Hydraulic conductivity or permeability (cm hr⁻¹) varies with soil moisture conditions (pF values). Two values can be entered: (a) saturated hydraulic conductivity, and (b) non-saturated hydraulic conductivity.

C —— SOURCE OF DATA

SOURCE ID:

Unique code for source (e.g., soil monograph or digital database).

Source:

Authors and initials, as text string (For example: Van Waveren, E.J. and Bos, A.B.).

Year.

Year data during which the profile data were collected/described (For example: 1988).

Title:

Title of source in which data are published, as text string (For example: ISRIC Soil Information System).

Series/publisher/year:

Self-explanatory, as text string (For example: Technical Paper 15, International Soil Reference and Information Centre, Wageningen).

LAB_ID:

Unique reference code for laboratory where analyses for relevant profile(s) were made (e.g., FR01).

Laboratory name:

Name of laboratory where analyses were made, as text string.

Coding system for analytical methods:

-	Organic Carbon	(OC)
-	Total Nitrogen	(TN)
-	Available Phosphorus	(TP)
-	pH-water	(PH)
-	pH-KCl	(PK)
-	pH-CaCl ₂	(PC)
-	Electrical conductivity	(EL)
-	Free CaCO3	(CA)
-	Gypsum	(GY)
-	Exch. Ca, Mg, K, and Na	(EX)
-	Exch. acidity and Aluminum	(EA)
-	CEC soil	(CS)
-	ECEC soil	(CE)
-	Base saturation	(BS)
-	Particle size distribution	(TE)
-	Bulk density	(BD)
-	Moisture content	(MC)
-	Hydraulic conductivity	(HC)

Note: All codes, plus a brief description of the corresponding analytical procedures, are documented in KEYMETHO.DBF, for example "OC01" stands for "Method of Walkley-Black". This information can be printed with option <6> of the TOOLS menu.

Appendix 7. List of country ISO codes

AF	Afghanistan	FJ	Fiji
AL	Albania	FI	Finland
DΖ	Algeria	FR	France
AS	American Samoa	GF	French Guiana
AD	Andorra	PF	French Polynesia
AO	Angola	TF	French Southern Territories
ΑI	Anguilla	GA	Gabon
AQ	Antarctica		Gambia
AG	Antigua and Barbuda		Georgia
AR	Argentina	DE	Germany, Fed. Rep. of
AM	Armenia	GH	Ghana
ΑW	Aruba	GI	Gibraltar
ΑU	Australia	GR	Greece
	Austria	GL	Greenland
AZ	Azerbaijan	GD	Grenada
BS	Bahamas	GP	Guadeloupe
BH	Bahrain	GU	Guam
BD	Bangladesh	GT	Guatemala
BB	Barbados	GN	Guinea
BE	Belgium	GW	Guinea-Bissau
BZ	Belize	GY	Guyana
BJ	Benin	HT	Haiti
BT	Bhutan	HM	Heard and McDonald Islands
BO	Bolivia	HN	Honduras
BW	Botswana	HK	Hong Kong
BV	Bouvet Island	HU	Hungary
BR	Brazil	IS	Iceland
IO	Brit. Ind. Ocean Territory	IN	India
BN	Brunei Darussalam	ID	Indonesia
BG	Bulgaria	IR	Iran, Islamic Republic of
BF	Burkina Faso	IQ	Iraq
	Burma	IE	Ireland
ΒI	Burundi	IL	Israel
BY	Belarus	IT	Italy
CM	Cameroon	JM	Jamaica
	Canada	JP	Japan
CV	Cape Verde	JO	Jordan
	Cayman Islands		Kampuchea, Democratic
	Central African Republic		Kazakhstan
	Chad		Kenya
	Chile	KI	Kiribati
	China		Korea, Republic of
	Christmas Island		Korea, Dem. Peopl. Rep.
	Cocos Islands		Kuwait
	Colombia		Kyrgystan
	Congo		Lao, People's Democratic Rep.
	Cook Islands	LB	Lebanon
CR	Costa Rica		Lesotho
	Croatia		Liberia
	Cuba		Libyan Arab Jamahiri
	Cyprus	LI	
	Czechoslovakia		Lithuania
CI	Côte d'Ivoire		Luxembourg
	Denmark		Macau
	Djibouti		Madagascar
DJ		MW	Malawi
DM	Dominica		
DM DO	Dominica Dominican Republic	MY	Malaysia
DM DO TP	Dominica Dominican Republic East Timor	MY MV	Maldives
DM DO TP EC	Dominica Dominican Republic East Timor Ecuador	MY MV ML	Maldives Mali
DM DO TP EC EG	Dominica Dominican Republic East Timor Ecuador Egypt	MY MV ML MT	Maldives Mali Malta
DM DO TP EC EG SV	Dominica Dominican Republic East Timor Ecuador Egypt El Salvador	MY MV ML MT MH	Maldives Mali Malta Marshall Islands
DM DO TP EC EG SV GQ	Dominica Dominican Republic East Timor Ecuador Egypt El Salvador Equatorial Guinea	MY MV ML MT MH MQ	Maldives Mali Malta Marshall Islands Martinique
DM DO TP EC EG SV GQ EE	Dominica Dominican Republic East Timor Ecuador Egypt El Salvador Equatorial Guinea Estonia	MY MV ML MT MH MQ MR	Maldives Mali Malta Marshall Islands Martinique Mauritania
DM DO TP EC EG SV GQ EE	Dominica Dominican Republic East Timor Ecuador Egypt El Salvador Equatorial Guinea Estonia Ethiopia	MY MV ML MT MH MQ MR MU	Maldives Mali Malta Marshall Islands Martinique Mauritania Mauritius
DM DO TP EC EG SV GQ EE	Dominica Dominican Republic East Timor Ecuador Egypt El Salvador Equatorial Guinea Estonia	MY MV ML MT MH MQ MR MU MX	Maldives Mali Malta Marshall Islands Martinique Mauritania

MD Moldova, Republic of SB Solomon Islands MC Monaco SO Somalia MN Mongolia ZA South Africa MS Montserrat ES Spain MA Morocco LK Sri Lanka MZ Mozambique SH St. Helena KN St. Kitts and Nevis NA Namibia PM St. Pierre and Miquelon NR Nauru VC St. Vincent and the Grenadines NP Nepal NL Netherlands SD Sudan

AN Netherlands Antilles SR Suriname
NT Neutral Zone SJ Svalbard and Jan Mayen

NC New Caledonia SZSwaziland NZ New Zealand SE Sweden NI Nicaragua CH Switzerland Syrian Arab Republic NE Niger SYTW Taiwan, Province China NG Nigeria NU Niue TJ Tajikistan Norfolk Island Tanzania, United Rep. of NF TZ

MP Northern Mariana Islands

TH Thailand

NO Norway

TG Togo

OM Oman

TK Tokelau

Tokelau

PKPakistanTOTongaPWPalauTTTrinidad and TobagoPAPanamaTNTunisia

PG Papua New Guinea TR Turkey
PY Paraguay TM Turkmenistan

PE Peru TC Turks and Caicos Islands
PH Philippines TV Tuvalu
PN Pitcairn SU USSR
PL Poland LIG Usanda

PL Poland UG Uganda
PT Portugal UA Ukraine
PR Puerto Rico AE United Arab Emirates
OA Oatar GB United Kingdom

PR Puerto Rico AE United Arab Emira
QA Qatar GB United Kingdom
RE Reunion US United States
RO Romania UY Uruguay

RURussian FederationUMUS. Minor Outlying IslandsRWRwandaUZUzbekistanLCSaint LuciaVUVanuatuWSSamoaVAVatican City State

SM San Marino VE Venezuela
ST Sao Tome and Principe VN Viet Nam

SASaudi ArabiaVGVirgin Islands (U.K.)SNSenegalVIVirgin Islands (U.S.)SCSeychellesWFWallis and Futuna Islands

SL Sierra Leone EH Western Sahara

SG Singapore YE Yemen
YD Yemen, Democratic
YU Yugoslavia

ZR Zaire
ZM Zambia
ZW Zimbabwe

Index

Coding protocols	
Horizon data	KEYPH90.DBF 23
Laboratory methods 40	KEYPOSIT.DBF 23
Source of data 40	KEYREGION.DBF 23
Database structure	KEYROOTS.DBF 23
KEYAREA.DBF	KEYSTATU.DBF 24
KEYCOUN.DBF	KEYSTRUC.DBF 24
KEYCROPS.DBF21	KEYTEXT.DBF 24
KEYDRAIN.DBF21	KEYVEGET.DBF 24
KEYFAO.DBF21	WIS_EXTE.DBF 24
KEYKOPPE.DBF 22	WISEANAD.DBF 20
KEYLANDF.DBF 22	WISEATRIB.DBF 20
KEYLUS.DBF 22	WISEHOR.DBF 19
KEYMETHOD.DBF22	WISELAB.DBF 20
KEYMOTTL.DBF 22	WISESITE.DBF 18
KEYPAREN.DBF 23	WISESOUR.DBF 20
KEYPH74.DBF	WISE
	installation 17