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Abstract	

The Global Ecosystem Dynamics Investigation (GEDI) lidar is a multibeam laser 
altimeter on the International Space Station. GEDI is the first spaceborne instrument 
designed specifically to measure vegetation structure and estimate aboveground carbon 
stocks in temperate and tropical forests and woodlands. This document describes the 
algorithm theoretical basis underpinning the development of the GEDI Level-4B (L4B) 
1-km gridded aboveground biomass density (AGBD) data product. GEDI’s primary L4B 
algorithm is a closed-form statistical estimation approach called hybrid inference (Ståhl 
et al., 2011; Patterson et al., 2019), in which mean biomass is estimated from an 
incomplete sample of modeled biomass values (available via the GEDI Level 4A 
product), and the variance of the estimated mean is a function of both L4A model 
uncertainty and uncertainty from GEDI’s sampling pattern.  Conventionally, the kind of 
linear observations collected by GEDI, or other air- or space-borne platforms, is treated 
as a cluster sample. Since at least two clusters are required to calculate a variance under 
hybrid estimation, GEDI’s primary algorithm may only be applied to 1-km cells 
containing samples from at least two ground tracks that intersect the grid cell. At the end 
of the mission, mean biomass in cells without sufficient clusters will be estimated instead 
with Generalized Hierarchical Model-Based inference (GHMB). This approach makes 
use of a second-level model that extends biomass to a surface predicted from wall-to-wall 
imagery. The output grids generated by this process represents our best understanding of 
the spatial distribution of tropical and temperate forest biomass, and may support a broad 
range of scientific, policy, and management applications. 
 



 
 

 

 

2 

Foreword	

This document is the Algorithm Theoretical Basis Document for the GEDI Level-4B 
(L4B) Gridded Aboveground Biomass Density product. The GEDI Science Team 
assumes responsibility for this document and updates it, as required, as algorithms are 
refined. Reviews of this document are performed when appropriate and as needed 
updates to this document are made.  
 
This document is a GEDI ATBD controlled document. Changes to this document require 
prior approval of the project. Proposed changes shall be noted in the change log, as well 
as incrementing the document version number.   
 
Questions or comments concerning this document should be addressed to: 
 
Sean P. Healey / Paul L. Patterson 
Inventory and Monitoring, United States Department of Agriculture (USDA) Forest 
Service, 1400 Independence Ave, SW, Washington, DC 20250-1111, USA 
sean.healey@usda.gov  
+1 (801) 391 7536 
 
John Armston 
2181 Lefrak Hall, Department of Geographical Sciences 
University of Maryland, College Park MD 20742 
armston@umd.edu  
+1 (301) 405 8444 
 
Ralph Dubayah 
2181 Lefrak Hall, Department of Geographical Sciences 
University of Maryland, College Park MD 20742 
dubayah@umd.edu  
+1 (301) 405 4069 
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1.0 INTRODUCTION	

This document is the Algorithm Theoretical Basis Document (ATBD) for the GEDI 
Level 4 Gridded Biomass Product (L4B). 

1.1 Document	Overview	and	Objective	

This document is designed to provide both: (1) a general theoretical overview of the 
algorithms, processing steps and procedures required to provide Level 4 gridded biomass 
products and (2) a detailed gridding algorithm implementation and processing flow 
specifically designed for the GEDI mission level 4 products.  
This topic is arranged in the following manner: 

• Section 1 presents a brief introduction and related documentation 
• Section 2 presents an overview of theoretical background 
• Section 3 presents details of the retrieval algorithm 
• Section 4 presents detailed Cal/Val procedures for GEDI L4B products 
• Section 5 contains references  
• An acronym glossary can be found at the end of this document 

1.2 Gridded	Biomass	Product	Overview	

Forest ecosystems store globally significant amounts of carbon (Houghton et al., 2009), 
and the forests of the United States currently offset approximately 15% of the country’s 
fossil fuel emissions through net addition of biomass (Woodall et al., 2015).  While 
ground-based forest inventories can provide authoritative information about current 
carbon stores, they are discontinuous across space and are not designed to explain how 
climatic and disturbance trends affect ecosystem services such as climate change 
mitigation and fiber production.  Moreover, such inventories are only operational in a 
handful of countries. Spaceborne platforms, when combined with fine-scale ecosystem 
models, offer the opportunity to study forest structure and carbon dynamics in a 
consistent way across the globe. However, large-area biomass mapping activities to date 
have relied upon ad hoc estimation techniques that can result in significant 
understatement of uncertainty (Mitchard et al., 2014).   
NASA’s GEDI mission has installed a lidar instrument on the International Space Station 
(ISS) to study forest structure in Earth’s tropical and temperate biomes between 51 
degrees north and south latitude.  Lidar’s active signals penetrate closed forest canopies 
and return data have been shown to be sensitive to different levels of biomass across a 
variety of forest types (Zolkos et al., 2013).  GEDI is a sampling instrument that acquires 
discontinuous, along-track full-waveform footprints that are well correlated with local 
biomass.  Multiple overpasses, each composed of several GEDI footprints, will ultimately 
intersect most cells in a global 1-km grid 51° N and 51°S.   The challenge of GEDI’s 
gridding process is to combine biomass modeled at each footprint in a way that 
approximates the true biomass of every 1-km cell.  Unless stated otherwise, biomass here 
refers to aboveground tree biomass density in Mg (“megagrams” or “metric tonnes”) per 
hectare.  The 1-km grid cells for which population mean biomass is to be estimated are 
often simply called “cells” here. 
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GEDI’s L1A Science Requirement states that the aboveground biomass of 80% of 1-km 
cells must be estimated to within a standard error of either 20 Mg/ha or 20% of the 
estimate, whichever is greater. 

This requirement imposes important constraints: 
• Accuracy is assessed at a 1-km scale, globally (in this document, the term 

“global” is used to indicate the temperate and tropical latitudes overflown by 
the ISS).  The largest existing field plots are 0.5 km2, which means that GEDI’s 
performance cannot be directly evaluated post-launch using existing plot 
networks. There is a possibility of flying airborne lidar data at the 1-km scale 
and treating the resulting biomass prediction as truth but ignoring field-to-
airborne model error can hide significant uncertainties (Saarela et al., 2016), 
which would make results of such a comparison ambiguous. 

• Precision is defined by way of standard error of the estimate, a statistical term 
implying how much one would expect the estimate to vary if many more 
samples were taken.  Addressing uncertainty formally in terms of expected 
estimate variation requires a theoretical basis not present with ad-hoc “error 
budgeting” approaches. 

• Error is assessed at the 1-km cell scale, and it must account for both: 1) 
uncertainty due to the fact that GEDI is making discontinuous measurements of 
biomass on only a fraction of the cell, and 2) uncertainty due to the fact that 
GEDI is not measuring biomass directly but is instead providing waveform-
derived correlates for biomass.  

The first two constraints are shared with large-area forest inventory operations such as 
the Forest Service’s FIA (Forest Inventory and Analysis) Program (Bechtold and 
Patterson, 2005).  FIA maintains a systematic sample of field plots across the country and 
must estimate biomass (and other forest characteristics) over areas far too large to 
exhaustively measure for the purpose of empirical uncertainty assessment.  FIA data are 
also frequently the basis for both private and public forest planning processes, and 
estimates must be accompanied by theoretically clear measures of uncertainty.  Both 
constraints argue for an approach based upon sampling theory.  GEDI has the added 
challenge of relying upon sample observations that are modeled (at the footprint level) 
instead of measured directly.  This challenge can nevertheless be addressed within a 
formal sampling framework, using so-called “hybrid” model-based inference (Ståhl et al., 
2016), which accounts for both model and sampling uncertainty.  Hybrid estimation was 
developed with airborne lidar data (Ståhl et al., 2010; Patterson et al., 2019), and has been 
applied to return data from GLAS (NASA’s Geoscience Laser Altimeter System aboard 
ICESat1), but those few efforts (Healey et al., 2012; Nelson et al., 2009) were limited to 
areas much larger than GEDI’s 1-km cells because of coverage limitations over forests. 
This document describes GEDI’s use of hybrid estimation to create an exhaustive 
coverage of non-overlapping 1x1-km mean biomass estimates, together with a grid of 
standard errors for each 1-km estimate (a process also called “gridding” here).  GEDI’s 
innovative instrument and mission design allow unprecedented coverage of Earth’s 
forests with strong predictors of biomass.  The gridding approach described herein relies 
upon clear sampling theory, described below. The GEDI Science Team has tested this 
approach with simulated GEDI data (derived from airborne discrete return lidar) in 6 
diverse ecosystems, as described in Section 2.3 and by Patterson et al. (2019). 
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1.3 Summary	of	GEDI’s	Footprint-level	Biomass	Modeling	
Strategy	

Mean aboveground biomass density (ABGD) in each 1-km cell of the gridded biomass 
product will be estimated using a formal method of inference called “hybrid” estimation.  
As described in later sections of this document, the uncertainties generated around 1-km 
hybrid estimates of biomass account for both sample error (due to incomplete coverage of 
the cell) and model error (owing to the fact that biomass must be modeled at the footprint 
level from lidar metrics instead of directly measured). 
Prior to describing hybrid estimation, it is important to summarize the methods used to 
assign a particular level of biomass to each footprint. This is because GEDI has taken a 
calibration approach that uses simulated GEDI waveforms, which has implications for the 
GEDI Level 4B algorithm implementation. This topic is discussed in more detail in the 
ATBD for the GEDI L4A Footprint Aboveground Biomass product (Kellner et al., 2023). 
Specifically, the GEDI Science Team has worked in collaboration with the global 
research community to develop a database consisting of field-inventory plots with 
associated AGBD and coincident airborne laser scanning (ALS) data, referred to here as 
the GEDI Forest Structure and Biomass Database (FSBD). The Team is using ALS data 
to produce simulated GEDI waveforms using a GEDI waveform simulator (Blair and 
Hofton, 1999; Hancock et al., 2011).  These waveforms are co-located with field 
measurements of biomass to generate the lidar-to-biomass models that will be used to 
predict biomass at the footprint level (i.e., GEDI’s L4A footprint-level biomass product). 
The GEDI L4A AGBD models are described by Kellner et al. (2023) and Duncanson et 
al. (2022). Calibration of these models will be updated annually as new data are 
incorporated into the GEDI FSBD, which will be used to update GEDI L4B grids. The 
primary benefits of this approach include: 

1. The availability of a much broader calibration dataset than would be feasible with 
a directed, post-launch GEDI field campaign 

2. Elimination of the spatial mismatch, and accompanying model noise, involved 
with placing field plots at GEDI shots for which we have only limited pointing 
knowledge (up to approximately 10m positional error) 

Models have been developed and applied to prediction strata defined by plant functional 
type (PFT) and world region. Two sets of parametric models have been developed: one 
representing the strongest possible model using “unnoised” waveforms; and another 
using “noised” lidar waveforms, accounting for realistic errors related to factors that 
impact the signal-to-noise ratio of waveforms (e.g., atmospheric attenuation). As 
described below, the GEDI L4B algorithm will use properties of both the noised and 
unnoised waveform simulations.	

1.4 Product/Algorithm	Objectives	

The two products of this algorithm are: mean aboveground biomass density estimates for 
cells in a global (51.6°S – 51.6°N) 1-km grid; and standard errors corresponding to each 
of those estimates.  In addition to these variables, the L4B product also reports: (i) 
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whether the main or the contingency mode of inference was used (discussed in Section 
2.0); (ii) decomposition of the variance into either modeling error and sampling error (for 
the main mode of inference) or two levels of modeling error (for the contingency 
method); and (iii) whether a given 1-km cell meets L1 precision goals for the mission.  
Specifically, those goals stipulate that 80% of cells should be estimated within a standard 
error of 20% of the estimate or 20 Mg/ha, whichever is greater. 
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2.0 THEORETICAL	BASIS	OF	ALGORITHM	

2.1 Sampling	Theory	and	Lidar	

GEDI is not a wall-to-wall sensor; it does not provide the kind of single-date images 
generated from platforms like Landsat or MODIS.  Unlike these sensors, though, GEDI’s 
canopy-penetrating measurements provide high-quality structure and biomass 
information.  The discontinuous measurements provided by airborne and spaceborne lidar 
sensors such as GEDI’s has led to interest in application of sampling methods and theory 
(Wulder et al., 2012; Gregoire et al., 2016). 
Sample theory allows inferences to be drawn regarding both population parameters 
(mean biomass density in this case) and the uncertainty around those parameters under 
clearly defined probability distribution assumptions.  It is sometimes useful to test 
estimators proposed for a given problem by using real data to compare analytical versus 
empirical results.  This kind of test for GEDI is described in Section 2.3, following the 
description of the estimators provided here. 
Like traditional field inventories, GEDI’s spaceborne lidar system only observes a 
spatially distributed portion of the landscape. GEDI’s sampling pattern is projected to 
roughly equate to a lattice (Figure 1), with parallel ascending and descending overpasses 
and approximately 500-meter cross-track spacing.  Given local irregularities in the 
pattern of GEDI’s overpass schedule and unpredictable loss of signal to clouds and other 
atmospheric phenomena, the precise location of GEDI sample lines within any single 
1x1-km cell is considered to be random.  However, because the locations of GEDI 
observations (“shots”) along any track are pre-determined once an overpass’ entry point 
is known, they cannot be considered to be independent.  Conventionally, such samples 
are treated as cluster samples within the context of variance calculations (Ståhl et al., 
2010).  Therefore, GEDI’s sampling pattern may be considered a randomly allocated 
cluster sample. 
Ståhl et al., (2011 and 2016) pioneered an approach based upon “hybrid” model-based 
inference, where discrete lidar observations within a study area are combined within the 
frame of a designed sample to infer both average biomass and variance around that 
estimated mean.  The statistical variance estimators used in this approach are composed 
of terms representing both sampling uncertainty (on the basis of sampling theory applied 
to the spatial distribution of lidar footprints) and model uncertainty (derived from the 
covariance matrix produced around the terms in the parametric model that allows 
prediction of footprint-level biomass). 
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Figure 1. Generalized projected pattern of GEDI overpasses at the equator after 18 months of 
operation. 

 

Assuming a linear model (𝛼"	)linking lidar and biomass, a general estimator of biomass 
would be: 

𝐸(�̂�) = 	∑ !!	#$
%!&∈( =	𝜋)	𝑋	𝛼"	        [1] 

where s is the sample of auxiliary data (i.e. lidar measurements), 𝜋&is the probability of 
including population element i into the auxiliary data sample, 𝜋′ is an n-length column 
vector of (1/𝜋&) – values, and X is an n x p matrix of sampled auxiliary data (with n the 
number of footprints and p the number of lidar-based parameters).  The model parameters 
are estimated from a sample presumed to be independent, which is the case with the 
methods used by the GEDI footprint-level product (see Section 1.3 and Kellner et al., 
2023).  The variance estimator, which is detailed in Section 3.4, likewise relies upon both 
model properties and probability sampling.  It is crucial to appreciate that the probability 
of inclusion (𝜋&) must be known for each observation (each footprint, in the case of 
GEDI).  As described above, GEDI’s sample within any particular 1x1-km cell uses a 
randomly allocated cluster design, and 𝜋& is determined accordingly within the context of 
finite sampling. 
Section 3.4 gives details for the hybrid estimators to be used for mean biomass within 
each 1-km cell and for the variance of those estimates.   
While hybrid model-based biomass estimation methods were developed using airborne 
lidar (e.g. Ståhl et al., 2011; Gobakken et al., 2012; Nelson et al., 2012; Corona et al., 
2014; Saarela et al., 2015), the approach has also been extended to spaceborne 

500 m 



 
 

 

 

13 

applications, primarily with the GLAS instrument aboard ICESat (e.g. Healey et al., 
2012; Neigh et al., 2013; Margolis et al., 2015; Nelson et al., 2017).  An alternative 
approach that also uses lidar data in a sample-survey context is called model-assisted 
estimation (Gregoire et al., 2011 and 2016; Magnussen, 2015).  Model-assisted 
approaches condition variance estimates upon the sample’s design instead of the biomass 
model’s properties (and are thus “design-based” instead of “model-based”).  However, 
such approaches require a designed sample of field plots within the domain of estimation 
(1-km grid cell in GEDI’s case), whereas hybrid estimators (like all model-based 
approaches) can make use of spatially remote field samples, even purposive or 
opportunistic samples.  Since designed samples of field plots clearly do not cover most of 
the Earth’s forests, hybrid estimation’s flexibility in this regard is critical.  There is, 
however, an assumption that the footprint-level model applies to the population to which 
it is applied.  This is discussed further in Section 4. 

2.2 Population	and	Sample	Properties	

The population of interest is defined as the area within a single 1-km GEDI grid cell.  The 
first step in developing a statistical estimator is to define the population of interest in 
terms relevant to a pre-defined sampling strategy. 

 
Figure 2.  Population units (20x20-meter) within a 1-km grid cell, as sampled by three GEDI 
overpasses. 

 
Each 1-km cell may be viewed as gridded into a finite number of approximately 20x20-
meter population elements (herein called “pixels”), with the same diameter of GEDI’s 
footprint: approximately 20m (see Figure 2). The GEDI shots will sample this population 
along tracks determined by the daily path of the Space Station and the mission’s pointing 
plan. In Figure 2, we represent the heading of the GEDI tracks as 45 and 315 degrees and 
the GEDI shots as equidistant apart.  We assume that difference in overpass angle, which 
will vary by latitude, will not fundamentally change the sampling patterns or properties 
shown in Figure 2.  In each population element we have the aboveground biomass 
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prediction, 𝑔(𝒙&* , 𝜶2), in Mg/ha (Equation 1). The population attribute of interest is the 
average of the GEDI predictions over the 𝑁 population elements. This average needs to 
be expressed in terms of GEDI sample tracks, which will be viewed as clusters of 
population elements (GEDI shots). This is consistent with similar applications in the 
airborne lidar-assisted inventory literature. 
Since footprints along a GEDI track may be viewed as alternating (one footprint is 
sampled while the next is not due to GEDI’s beam-dithering approach), each laser path is 
composed of two disjoint possible clusters: one starts on the edge of the 1-km x 1-km cell 
and one starts one shot in. If we combine over all the 45° lines, the population units are 
distributed along M non-overlapping clusters. For the GEDI sample, there will be with 𝑇& 
shots in the ith cluster. We can express the population attribute, average of GEDI 
predictions over the 𝑁 population elements, in terms of the clusters; that is: 

 
𝜇+ =

∑ ∑ 𝑔(𝒙&* , 𝜶2)
,!
*-.

/
&-.

𝑁  
[2]  

Note that each population element is in one ascending line and one descending line. In 
the sampling design there are three possibilities, all ascending tracks, all descending 
tracks, or a combination of the two. In the first two cases M is the 2*number of lines and 
N is the number of 20mx20m cells in the population. In the second case both M and N are 
twice that number, but the average 𝑌7 is the same. Therefore, in all of the three cases, we 
are estimating the same number. 

2.3 Sufficiency	of	Proposed	Estimators	for	1-km	square	cells	

The approach taken here, described in more detail by Patterson et al. (2019) is similar to 
the approach described by Ståhl et al. (2010) as appropriate for “large area” estimation 
problems.  The size of the area is an issue because, while residuals of the footprint-level 
model are expected to sum to near zero over a large number of predictions, residual error 
may add uncertainty to the estimate in cases where fewer predictions are made, 
particularly if model residual errors show strong spatial autocorrelation.  In such cases, it 
might be advisable to include a term in the variance estimator accounting for residual 
error. 
Simulations described in Appendix S3 of Patterson et al. (2019) demonstrate that in most 
cases, a 1-km grid cell is large enough to assume negligible residual error.   Therefore, no 
term has been added to our hybrid variance estimator.  

2.4 Test	of	Proposed	Estimators	

It is often helpful to formally test the assertion that an estimator is unbiased for a 
particular application. A test of the algorithms described in Section 3 was conducted 
using airborne lidar and field data collected in six areas of the US (Figure 3) by a NASA 
CMS (Carbon Monitoring System) project: “An Historically Consistent and Broadly 
Applicable MRV System Based on Lidar Sampling and Landsat Time-series” (PI: 
Cohen).  GEDI footprints were simulated from wall-to-wall discrete return lidar using the 
GEDI waveform simulator, which simulates large-footprint lidar waveforms using the 
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method presented in Blair and Hofton (1999), with noise added following Hancock et al. 
(2011) and Davidson and Sun (1988). 
Sixty random areas (10 from each of the areas depicted in Figure 2) of approximately the 
same dimensions of a GEDI 1-km grid cell were selected from the CMS dataset.  
Alternative GEDI overpass patterns were simulated within each cell, with the inclination 
of each overpass at either 45° or 315°.  Simulated shots were extracted in each overpass 
scenario, using realistic GEDI along-track spacing. Four thousand overpass patterns were 
generated for each case from 2 to 6 total overpasses in each test grid cell. 

 
Figure 3.  Study locations from which airborne lidar and field biomass data used to test GEDI’s 
proposed estimator were acquired.  North-South strips of discrete return lidar were collected at each 
site, along with field biomass data from 50 purposively distributed field plots. The numeric Landsat 
WRS-2 Path/Row for each site is also shown. 

 
Regionally specific biomass models were created for the six study areas shown in Figure 
3.  Models for each region were calibrated at 50 plots (300 total supporting 6 regional 
models), placed strategically to cover the presumed range of biomass values.  Simple 
polynomial models using simulated GEDI relative height metrics were fit to explain 
biomass for each plot.   The covariance matrix of parameter values for each model is the 
primary vehicle for representing model uncertainty in hybrid variance estimators (see 
Section 3.4).  In this test, that matrix was used to generate 4000 different biomass models 
for each of the 4000 overpass patterns generated above.  Mean biomass and estimate 
variance were both estimated using the proposed hybrid estimators, and estimates were 
compared to empirical values derived from these simulations. 
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Figure 4. Empirical versus estimated biomass (Mg/ha) at 60 randomly located grid cells.  This is the 
result for the 2-overpass case; more overpasses showed even less deviation from the 1:1 line. 

 
Results showed that estimates of mean biomass derived from the proposed hybrid 
estimators were unbiased across the sixty pseudo-GEDI grid cells (Figure 4).  The same 
exercise showed proposed variance estimators to be asymptotically unbiased at higher 
numbers of overpasses (Figure 5).  At least across the range of ecological variability 
captured in the six sampled study areas, the estimators proposed here for both mean 1-km 
biomass and variance of the estimate of the mean seem to be unbiased.  It should be 
repeated that these estimators assume the footprint-level biomass models (described in 
the GEDI-L4A ATBD; Kellner et al., 2023) to be correctly specified and parameterized; 
to the degree that this assumption is met, the proposed estimators appear appropriate for 
GEDI. 
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Figure 5.  Average variance estimated for biomass estimates at the 60 simulated GEDI grid cells.  The 
graph shows a comparison of empirical and analytical (estimated) mean biomass density estimate 
variance (square units for Mg/ha).  Slight under-prediction of variance using hybrid estimators was 
noted when there are only two GEDI tracks intersecting a grid cell, but estimates appear to be 
asymptotically unbiased with increasing numbers.  

 

2.5 Rules	for	footprint	inclusion	in	the	sample	

The mission’s precision goal does not specify just the forested parts of each cell – 
estimates must be stated in terms of mean ABGD over the entirety of the 1-km pixel.  For 
this reason, every clear footprint – regardless of suspected land cover type – must be 
included in the estimation process.  A significant bias would result from screening out 
(i.e. omitting from the sample) non-forest footprints, even in mixed 1-km cells that are 
partially covered by water features.  Ancillary land cover information is nevertheless 
used to improve the biomass predicted for some waveforms.   
The algorithm uses datasets available in the GEDI L4A product to exclude footprints that 
do not have sufficient geometric or radiometric quality for inclusion in the sample. There 
are flags in the L4A product that define whether each GEDI observation is representative 
of the conditions under which GEDI04_A models were developed (Kellner et al., 2023), 
however these are not used in L4B to avoid systematically omitting high biomass 
footprints for some prediction strata. L4A footprints are included in the sample used for 
the L4B algorithm based on the following criteria (pseudo-code	in	italics):	

1. Shots flagged as high quality by the GEDI L2A Footprint Height and Elevation 
metric product (Hofton and Blair, 2020), which identifies surface waveforms with 
high fidelity 
l2_quality_flag == 1 
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2. Only shots with a beam sensitivity >0.98 for tropical Evergreen Broadleaf Tree 
prediction strata, and beam sensitivity >0.95 elsewhere, were included. These 
beam sensitivity thresholds were calculated using a 3-sigma signal threshold and 
selected to provide a sufficiently high signal-to-noise ratio to penetrate the highest 
canopy cover expected in these regions (Tang et al., 2019). 
if predict_stratum in (EBT_Af, EBT_SA, EBT_SAs): 
    geolocation/sensitivity_a2 > 0.98 
else: 
    geolocation/sensitivity_a2 > 0.95 

3. Shots with high degradation of geolocation performance were excluded from the 
sample since these may fall outside the geographic extent of a 1 km cell. 
(degrade_flag // 10) is not in [5,7,8,9] & 
(degrade_flag % 10) is not in [1,2,4,5,6,7,9] 

The L4A models are not applicable to waveforms collected under leaf-off conditions in 
deciduous forests and woodlands. The land_cover_data/leaf_off_flag dataset indicates 
whether the footprint was collected under leaf-off or leaf-on conditions and was derived 
for a 1 km EASE 2.0 grid using the VIIRS land surface phenology product VNP22Q2 
(Zhang et al., 2016). land_cover_data/leaf_off_flag = 1 when the footprint was collected 
after the onset of maximum greenness and before the midpoint of the senescence phase 
for the given 1 km grid cell. Some L4A models use exclusively RH98 to predict AGBD. 
When this is the case, the L4B algorithm does not consider the leaf_off_flag because the 
impact of leaf-off conditions is assumed to be minimal for RH98. 
A biomass of zero (with zero model parameter covariance) is assigned to footprints over 
permanent open water bodies, urban infrastructure, bare ground and permanent snow/ice. 
In the case of permanent open water bodies, this is assigned using 
landsat_water_persistence < 10, which is the annual water percentage (Pickens et al., 
2020). In the urban infrastructure case, this is assigned using urban_percentage < 50, 
where buildings may create waveforms indicative of substantial tree cover. While urban 
trees do store biomass, the risk of substantial biomass overprediction is of greater 
magnitude than the risk of missing biomass in street trees. The variable 
urban_percentage is from a 25 m global urban mask developed by the GEDI Science 
Team using the TerraSAR-X and TanDEM-X global urban footprint (GUF) data product 
(Esch et al., 2013). In the bare ground and permanent snow/ice cases, this is assigned 
using the European Space Agency (ESA) WorldCover 10m 2021 V200 product land-use 
“bare/sparse” and “snow/ice” classes, mode aggregated to 30m spatial resolution, for 
which class-specific accuracies are above 92% (Zanaga et al., 2022). 
Some users will require an estimate of biomass density associated only with the forested 
part of 1-km cells.  Such users may determine what fraction of the cell using the fine-
resolution map of their choice and divide the L4B AGBD estimate by that fraction to 
arrive at a mean for the forested area.  By avoiding pre-defining a sub-kilometer 
forest/non-forest mask, GEDI allows users to choose whichever mask best suits their 
application. 
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3.0 RETRIEVAL	ALGORITHM	

3.1 Requirement	

GEDI’s L1A Science Requirement states that 80% of 1-km cells must be estimated to 
within a standard error of either 20 Mg/ha or 20% of the estimate, whichever is greater. 

3.2 Product	Specification	

The 1 km2 resolution global EASE-Grid 2.0 is used to partition the GEDI L4A dataset 
(by footprint center point) into grid cells. This grid features equal-area cells and 
compatibility with many existing biosphere data sets. More information on this grid can 
be found in Brodzic et al. (2012), Brodzic et al. (2016) and from NSIDC at 
https://nsidc.org/data/ease. The L4A footprint biomass predictions are described in that 
product’s User Guide (see Dubayah et al., 2021). The elevation and height metric 
algorithms used by GEDI are described in Hofton et al. (2020). 
GEDI’s primary L4B algorithm is hybrid inference (Ståhl et al., 2010; Patterson et al., 
2019), in which mean biomass is estimated from an incomplete sample of modeled 
biomass values (available via the L4A product).  Conventionally, the kind of linear 
observations collected by GEDI, or other air- or space-borne platforms, is treated as a 
cluster sample.  Since at least two clusters are required to calculate a variance under 
hybrid estimation, GEDI’s primary algorithm may only be applied to 1-km cells that have 
been intersected by at least two ground tracks.  At the end of the mission, mean biomass 
in cells without sufficient clusters will be estimated instead with Generalized Hierarchical 
Model-Based inference (GHMB; Saarela et al., 2018; Saarela et al., 2022).  This 
approach makes use of a second-level model that extends biomass to a surface predicted 
from wall-to-wall imagery.  The “Mode of Inference” L4B variable describes which 
method was used for a particular cell. Until mission completion, only those cells where 
hybrid inference is possible will be populated with a mean biomass value (others will 
have a value of 0).  
The distribution of no-data cells in the “Mode of Inference” grid is not uniform, with 
higher non-response found: 1) earlier in the mission life; 2) closer to the equator where 
the ISS overpass pattern is sparser; 3) in cloudy areas; and 4) in areas where reference 
ground tracks were not sampled because of the Mission’s Year 2 orbital resonance 
problem.  The latter problem involved repeated coverage of some ground tracks at the 
expense of others because of an unscheduled change in ISS altitude.  See Sections 3.4 
and 3.5 for details for estimated uncertainty. 
Both the hybrid and GHMB variance estimators have two components, the first of which 
for each is model covariance due to the L4A field-to-GEDI AGBD model (Variance 
Component 1 variable).  For hybrid estimation, the second variance component relates to 
GEDI’s sample design, while for GHMB the second component relates to the fit of an 
additional model that links L4A predictions to wall-to-wall imagery.  The Variance 
Component 1 and 2 variables allow the user to decompose uncertainty expressed in the 
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Standard Error variable into its primary components, whether the Mode of Inference is 
hybrid or GHMB estimation. 
The Quality Flag variable allows querying of product progress toward the mission’s 
aforementioned precision target. Table 3.1 lists the outputs described above.  In addition 
to estimated variance components, the user is also given the number of overpasses 
(sample clusters) and total observations for the grid cell.  The minimum number of 
samples per cluster for GEDI is one; sample numbers are disclosed to provide context for 
uncertainty estimates.  Sårndal et al. (1992) suggest that means and variances may 
become unstable if there are fewer than 10 samples per cluster (in this case, per overpass) 
and Thompson (2004) provides similar guidance but identifies the limit as 5 samples per 
cluster. 
 

Table 3-1 Summary of Gridded Biomass Outputs. Output granules are < 1 Gb each. 

Output GEDI 
Product 

Units of measurement Description Data type No data 
value 

Mean Mg ha-1 Estimated mean AGBD for the 1-km 
grid cell, including forest and non-forest 

Float32 -9999 

Variance 
Component 1 

N/A 
Uncertainty in the estimate of mean 
biomass due to the field-to-GEDI model 
used in L4A, expressed as variance. 

Float32 -9999 

Variance 
Component 2 

N/A 
If Mode of Inference = 1, this is the 
uncertainty due to GEDI’s sampling of 
the 1-km cell, expressed as variance. If 
Mode of Inference = 2, this is 
uncertainty due to the model predicting 
biomass using wall-to-wall data, 
calibrated with the L4A footprint 
product 

Float32 -9999 

Standard Error Mg ha-1 Standard Error of the mean estimate, 
combining sampling and modeling 
uncertainty 

Float32 -9999 

Percentage 
Standard Error 

Percentage Standard error as a fraction of the 
estimated mean AGBD 

Uint8 255 
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Number of 
Clusters 

Count Number of unique GEDI ground tracks 
with at least 1 high-quality waveform 
intersecting the grid cell 

UInt16 0 

Number of 
Observations 

 

Count Total number of high-quality waveforms 
across all ground tracks within the grid 
cell 

UInt32 0 

Quality Flag None 
0 = Outside the GEDI domain 
1 = Land surface 
2 = Land surface and meets GEDI 
mission L1 requirement (Percent 
standard error <20% or Standard Error < 
20 Mg ha-1) 

UInt8 0 

L4A Prediction 
Stratum 

None Determined by Plant Functional Type 
and continent. Associated with a L4A 
model parameter covariance matrix that 
contributes to the Model Error Variance 

UInt16 0 

Mode of 
Inference 

None 
0 = None applied 
1 = Hybrid Model-Based 
2 = Generalized Hierarchical Model-
Based 

UInt8 0 

 

3.3 Algorithm	Flow	

The algorithm flow of the L4B Gridded Aboveground Biomass (GEDI04_B) algorithm is 
presented in Figure 6. 

3.3.1 Inputs	
The primary inputs for the biomass gridding process are the footprint-level predictions of 
aboveground biomass and an indexing of clear shots by cell and by overpass (Table 3-2).  
Section 1.3 describes how those predictions (which compose the GEDI-L4A product) are 
made.  Using a global dataset of paired simulated waveforms and field measurements of 
biomass, two parametric models have been created: one using realistically “noised” lidar 
data; and one using “unnoised” data.  While ephemeral noise factors like background 
illumination and atmospheric attenuation can introduce random error into the footprint-
level biomass model, the larger concern from a model-building point of view is footprints 
where the ground-finding algorithm fails, potentially causing height errors of tens of 
meters.  Such footprints will appear as outliers in height-to-biomass space and can exert 
strong leverage on the parameters that will ultimately be used to predict biomass at all 
sites.  Accommodating these outliers in the model-building process may cause over- or 
under-prediction of biomass for the majority of non-problematic footprints. 
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For this reason, unnoised data are used to create the footprint-level biomass predictions.  
Waveforms derived with ground-finding errors will be incorrectly predicted, but we 
assume those cases will be rare, and biomass at most footprints will be predicted with the 
best possible models.  However, the covariance matrix of model parameters used to 
propagate model error in the variance calculations (below) is generated from the same 
models updated with predictor variables (xvar) that are derived from waveform 
simulations with realistic estimates of noise. The magnitude of noise in these waveform 
simulations is determined by randomly sampling from the distribution of beam sensitivity 
and noise standard deviation observed on orbit, following the quality filtering outlined in 
Section 2.5, for input to the simulation approach developed in Hancock et al. (2019) and 
applied in Duncanson et al. (2022). This approach aims to account for a conservatively 
high amount of model error while ensuring that the majority of footprint-level predictions 
are as good as possible.  In Table 3-2, model parameters come from the unnoised models, 
which are available in the L4A product. The parameter covariance matrices come from 
the noised models, which are generated by the L4B algorithm. 
Figure 6 highlights the process of aggregating footprint measurements and predictions 
first at the track (cluster) level and at the grid cell level.  Filtering rules based on 
waveform quality are described above (Section 2.5).  It is notable that filtering does not 
occur based on variables such as slope or canopy cover that may be correlated with 
biomass; such systematic omissions may result in misleading inferences about mean 
biomass. 

Table 3-2 Summary of GEDI and External Inputs 
Input GEDI parameter Information needed GEDI Product Source 

Footprint-level 
geolocation 

Which shots are in each 1 km cell on the 
EASE 2.0 grid 

GEDI Level 4A Datasets: 
geolocation/lat_lowestmode 
geolocation/lon_lowestmode  

Footprint Identifier Which shots are in each track (cluster) 
within each cell 

GEDI Level 4A Datasets: 
shot_number 

Footprint-level estimated 
biomass 

The level of aboveground biomass 
(Mg/ha) is estimated for each footprint 

GEDI Level 4A Datasets: 
agbd 
agbd_t 

Footprint-level predictor 
variables 

The predictor variables (transformed 
relative height metrics) used to estimate 
aboveground biomass (Mg/ha) is estimated 
for each footprint 

GEDI Level 4A Datasets: 
xvar 

Footprint-level land 
cover data 

Land cover data used to determine which 
shots to apply a zero mean / zero 
covariance model, and if the shot was 
acquired in leaf-off conditions in 
deciduous forests and woodlands. 

GEDI Level 4A Datasets: 
land_cover_data/landsat_water_persistence 
land_cover_data/urban_proportion 
land_cover_data/leaf_off_flag 
 
External: ESA WorldCover v002 (Zanaga et al., 
2022) 

Footprint-level model 
information 

The parameters used to predict biomass at 
a footprint in each prediction stratum 
(includes variance/covariance matrix of 
model parameters) 

GEDI Level 4A Datasets:  
/ANCILLARY/model_data (compound) 
predict_stratum 
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Shot quality information Factors used to filter land surface shots 
based on measurement quality: waveform 
fidelity, signal-to-noise ratio (beam 
sensitivity); and degradation of 
geolocation. 

GEDI Level 4A datasets: 
l2_quality_flag 
geolocation/sensitivity_a2 
degrade_flag 

Granule quality 
information 

Factors used to statistically filter sub-orbit 
granules within individual tiles that have 
outlier predictor variables and spurious 
aboveground biomass estimates because of 
atmosphere (e.g., low flog and cloud). 

GEDI Level 2A datasets: 
digital_elevation_model 
elev_highest_return 

Global equal-area 1 x 1 
km grid 

Spatial extent of each cell defined by the 
EASE 2.0 grid 

NA, external (Brodzic et al., 2012) 

	
3.3.2 Processing	
The primary processing tasks are described here and are designed to ensure the 
computing burden in each 1-km cell is light (Figure 6). Means must be calculated for 
biomass predictions within each overpass, and then a mean of those means must be 
calculated to produce the gridded estimate (see Equations 3-5 in Section 3.4).  Variance 
estimates are slightly more complex. Two straightforward linearizations (not explicitly 
described here) limit the complexity of calculations. 
The GEDI Level 4A product is partitioned into 72x72 km tiles on the EASE 2.0 grid 
using footprint ground elevation coordinates (geolocation/[lat|lon]_lowestmode) for 
global processing. Prior to application of the baseline algorithm (Section 3.4), orbit 
granules affected by atmosphere, including low cloud and fog, in each 72x72 km tile 
were identified and removed using an iterative local outlier detection algorithm. This 
algorithm involved the following steps for each 72x72 km tile: 

1. Read all quality shots in a 108x108 km window centered over the 72x72 km tile 
and calculate the difference between GEDI derived canopy top elevation 
(elev_highestreturn) and the TanDEM-X DEM elevation 
(digital_elevation_model) from the GEDI Level 2A product. 

2. At 𝑋 spatial resolution and using the differences from step (1), calculate: 
a. The Z-score for each cluster with 𝑍𝑖 = (𝑥𝑖 − 𝜇)/𝜎, 

where 𝑥𝑖 is the mean difference for cluster i, 𝜇 is the mean of all cluster 
means, and 𝜎 is the standard deviation of all cluster means 

b. max(𝑥), the maximum value of cluster mean differences. 
3. Select all clusters that have a least Y cells with a Z-score greater than the 0.99 

quantile of Z-scores and a mean cluster difference > 30 m. Add their orbit number 
to the sub-orbit granule exclude list for that tile 

4. Iterate steps 1-3 until there is no further change in the sub-orbit granule by tile 
exclusion list 

5. A small number of sub-orbit granules may be manually identified and added to 
the sub-orbit granule exclude list in step (4) through visual comparison of the 
GEDI Level 4B 1 km mean and standard error grids with the output of step (2) 
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For the GEDI Level-4B PGE Version 2, X was 2-km in step (2), Y was 5 in step (4), and 
steps 1 to 3 were applied 5 times. Entire granules instead of tracks per tile were removed 
per tile to minimize the number of iterations required (all or multiple tracks from an orbit 
were usually affected). 
 

 
Figure 6. Algorithm Flow Diagram 

 

3.4 Baseline	Algorithm	

Figure 7 summarizes the calculations and data needed to produce output estimates of 
mean biomass in each 1-km cell as well as estimates of the standard error around those 
mean estimates.  These processes, also discussed here in detail, will operate at the grid 
cell level, considering all footprints occurring within the cell’s borders.  A contingency 
for cells which do not have the two or more overpasses needed to supply a cross-cluster 
variance is presented in Section 3.5. 
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Figure 7. Interaction of equations in derivation of mean and standard error estimates. 

 
Equation [2] will be expressed in an equivalent form, for which there is an estimator 
allowing calculation of variance. Let 𝐺<& = ∑ 𝑔(𝒙&* , 𝜶2)

,!
*-. , the cluster total of the 

predicted biomass per hectare for the pixels in the ith cluster. Then equation [2] can be 
expressed in terms of the ratio of the sum of the cluster totals of the biomass per hectare 
and sum of the number of pixels per cluster, which then can be expressed as the ratio of 
mean over the clusters of the cluster totals of the predicted biomass per hectare for each 
pixel in the cluster and the mean over clusters of the number of pixels per cluster,  

 𝜇+ =
∑ 𝐺<&/
&

∑ 𝑇&/
&-.

=
𝑀0. ∑ 𝐺<&/

&

𝑀0. ∑ 𝑇&/
&-.

 [3]  

We propose to use a single random sample of the clusters (i.e., the GEDI tracks). We will 
estimate the mean of cluster totals and average length separately and combine as a ratio 
estimator.  

 �̂�+ =
𝐺<̅
𝑇7
=
𝑚0.∑ 𝐺<&1

&

𝑚0. ∑ 𝑇&1
&-.

=
∑ 𝐺<&1
&

∑ 𝑇&1
&-.

=
∑ ∑ 𝑔(𝒙&* , 𝜶2)

,!
*-.

1
&

𝑛  [4]  

where 𝑛 = ∑ 𝑇&1
&-.  is the number of GEDI shots in the sample. This estimator combines 

design-based sampling with model-based estimation, i.e., there is a sample of auxiliary 
information (as opposed to wall-to-wall auxiliary information, such as landsat) and the 
population element value biomass is estimated using a model. These types of estimators 
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have been denoted hybrid estimation (Ståhl et al, 2016).  In setting of “Stratification and 
post-stratification”, Ståhl et al (2011), proposed an estimator of the form of equation [4] 
and derived an approximate variance and proposed an estimated variance. In expression 
[5] below is estimated variance proposed in Ståhl et al (2011), with the addition of the 
finite correction factor. 

 

𝑉<(�̂�+) =
1
𝑇72
C1 −

𝑚
𝑀E

∑ F𝐺<& − �̂�+𝑇&G
21

&-.

𝑚(𝑚 − 1)

+
1
𝑇72
II𝐶𝑜𝑣M 32F𝛼"4 , 𝛼"5G

6

5-.

6

4-.

�̅�<4)�̅�<5)  

[5]  

The first term is due to the sample design and the second term is due to model 
uncertainty. If we assume a linear model, that is 𝑔(𝒙&* , 𝜶2) = 𝛼. + ∑ 𝑥&*4𝛼4

6
4-2 , where 𝑥&*4 

is the jth component of 𝒙&*, then, 

�̅�<4) =
1
𝑚II𝑥&*4

,!

*-.

1

&-.

	 

Using the linear model assumption, we can rewrite the second term of equation [5]. Let 𝒙NO 
be the vector of the means of the cluster totals of the predictor variables, i.e., 𝒙NO4 =
.
1
∑ ∑ 𝑥&*4

,!
*-.

1
&-. , for 𝑗 = 1,… , 𝑝. Then the second component of right-hand side of 

equation [7] can be expressed in matrix notation.  

 II𝐶𝑜𝑣M 32F𝛼"4 , 𝛼"5G
6

5-.

6

4-.

�̅�<4)�̅�<5) = 𝒙NO,𝐶𝑜𝑣M (𝜶2)𝒙NO	 [6]  

where 𝐶𝑜𝑣M (𝜶2) is the predicted covariance matrix of the fitted parameters. Note that 𝒙NO. is 
equal to 𝑇7. 

3.5 Contingency	Algorithm	

Cells not meeting precision requirements (Quality Flag = 1) with hybrid inference at the 
end of the mission will follow a different biomass estimation process.  Generalized 
Hierarchical Model-Based inference (GHMB), as described and tested in the GEDI 
context by Saarela et al. (2018), relies upon both a sample of high-quality data and a 
wall-to-wall modeled surface of biomass to produce inferences about the forest 
population of an area such as a 1-km cell.  AGBD is measured at a set of field plots 
presumed to be representative of the population that includes the 1-km cell; these plots do 
not need to fall within the cell.  AGBD is then modeled from the plots to a set of 
coincident real or simulated GEDI waveforms, allowing AGBD prediction at all GEDI 
shots (this process is equivalent to the L4A process).  Predicted biomass at all shots is 
then compared to coincident satellite imagery (likely from Landsat, Sentinel, or 
TanDEM-X).  In GHMB, uncertainties from both models (field to lidar, lidar to Landsat) 
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are combined appropriately, such that estimate of the mean and standard error may be 
derived for areas of interest.  Saarela et al. (2018) demonstrate that this approach is likely 
to be appropriate for many 1-km cells. Research by the GEDI Science Team is 
demonstrating that in most realistic cases hybrid and GHMB estimators yield 
approximately equivalent estimates of mean biomass and estimated variance (Saarela et 
al., 2018; Qi et al., 2019; Saarela et al., 2022). GHMB estimates of mean AGBD and the 
standard error of those estimates will fill in estimates for the zero- and one-pass cells 
across the grid.  
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4.0 CALIBRATION	AND	VALIDATION	

The Forest Inventory and Analysis Program of the US Forest Service (FIA; Bechtold 
and Patterson, 2005) has a mission similar to GEDI’s: to report biomass and other forest 
characteristics over areas so large that they would be infeasible to exhaustively measure.  
A range of corporate and municipal forest managers rely upon FIA’s estimates for 
decisions related to timber supply, finding sites for bioenergy projects, old-growth and 
endangered species management, and carbon accounting.  Assessments in these fields 
require unbiased estimates for which uncertainty can be clearly stated. Sample theory 
allows FIA, under a few simple and clearly stated assumptions, to calculate the standard 
error of its estimates on the basis of sample number and variance. While GEDI’s 
approach must also consider footprint-level model error, sample theory likewise performs 
a similar function: both inferences and uncertainties may be formally derived for an area 
of interest (i.e., each 1-km grid cell) under clear assumptions. 

The GEDI mission, like FIA’s national forest inventory, relies upon its own 
theoretically calculated estimates of precision for purposes of determining mission 
performance with respect to its science goals. The primary risk associated with this 
strategy is incorrect biomass model specification at the footprint level. Model-based 
inference (including the hybrid approach used here) assumes that the parameter selection 
process during model-building includes variance that is representative of conditions in 
the domain in which the model is being applied. Significant model misspecification at 
this stage, due possibly to selection or measurement bias, can result in unacknowledged 
estimation errors. 

Post-launch calibration and validation efforts are therefore primarily focused at the 
scale of individuals footprints. Efforts include expanding the acquisition of co-located 
simulated GEDI and field data in ecosystems under-represented in the GEDI FSBD used 
for model-building. Such data will provide insight into previous effects of generalization 
error on cell-level estimates and supply a better basis for calibrating the footprint-level 
models. Updated footprint-level models will also support future reprocessing of the grid-
based biomass estimates. Details of the footprint-level calibration and validation plan can 
be found in the theoretical basis document for that product (L4A; Kellner et al., 2023). 

 Independent validation is also important to assess unacknowledged estimation errors 
in the GEDI Level 4 strategy for biomass inference. Activities include comparison 
against design-based estimates from national forest inventories (e.g., Menlove & Healey, 
2020) at multiple scales (e.g., Dubayah et al., 2022), which are not subject to the same 
modeling errors that the GEDI estimates are. Large area acquisition of a sample of GEDI 
grid cells by NASA’s Land Vegetation and Ice Sensor (LVIS) and other ALS platforms 
may also be used to support validation of the GEDI Level 4B product. However only a 
very small fraction of GEDI’s global grid may be sampled with this approach. Ignoring 
ground-to-airborne model error can also introduce significant unappreciated uncertainty 
(Saarela et al., 2016). Accounting for ground-to-airborne model error is possible (Nelson 
et al., 2017), therefore good practice protocols need to be followed (see Duncanson et al., 
2021) to ensure expected uncertainties are substantially lower than GEDI’s stated levels 
of error. Generally, GEDI’s internal estimates of uncertainty, based upon sampling theory 
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and properties of GEDI’s sample and models, should be the most globally consistent and 
comprehensive metric of the precision of the L4B gridded biomass product. 
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GLOSSARY/ACRONYMS	

CAL/VAL Calibration and Validation 

FIA Forest Inventory and Analysis 
GEDI Global Ecosystem Dynamics Investigation 

L4A Level 4A 
L4B Level 4B 

AGBD Aboveground Biomass Density 
GHMB Generalized Hierarchical Model-Based inference 

RH Relative Height metrics 
 
 


