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Abstract	

The Global Ecosystem Dynamics Investigation (GEDI) lidar is a multibeam laser altimeter on 
the International Space Station. GEDI is the first spaceborne instrument designed specifically to 
measure vegetation structure and estimate aboveground carbon stocks in temperate and tropical 
forests and woodlands. This document describes the algorithm theoretical basis underpinning the 
development of the GEDI Level-4A (GEDI04_A) footprint aboveground biomass density 
(AGBD) data product. The GEDI04_A data product contains footprint-level AGBD (Mg · ha-1) 
for individual GEDI footprints and the associated prediction uncertainty. GEDI04_A is a 
standalone data product, and GEDI04_A models are an input to the GEDI Level-4B 
(GEDI04_B) gridded AGBD data product. The GEDI04_A algorithm uses GEDI Level-2A 
(GEDI02_A) relative height metrics as input to parametric linear models to predict AGBD. 
GEDI04_A models were developed from a quality-filtered data set of GEDI footprint sized field 
plots paired with simulated GEDI waveforms across 21 countries and all continents within the 
GEDI domain (51.6 degrees N – S latitude). The models are stratified by combinations of world 
region and plant functional type (PFT). We describe the development of the GEDI04_A models 
and algorithm implementation for on-orbit prediction, including geographic transferability, 
elimination of GEDI02_A observations that do not meet requirements of the GEDI04_A 
algorithm, and quality flagging of GEDI04_A predictions. The GEDI04_A quality flag 
(l4_quality_flag) indicates the degree to which the input and output variables are representative 
of the conditions under which GEDI04_A models were developed. 
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1.	INTRODUCTION	
The Global Ecosystem Dynamics Investigation (GEDI) is producing measurements of 

vertical forest structure using a multibeam waveform lidar on the International Space Station 
(Dubayah et al., 2020a). Two objectives of the mission are to quantify the distribution of 
aboveground carbon in woody vegetation, and to use these estimates to determine the impact of 
land use and land-cover changes on aboveground carbon stocks. Both of these objectives speak 
to fundamental uncertainties in our understanding of the role of the land surface in the global 
carbon cycle (Canadell et al., 2007; Cox, 2019). 

The sole GEDI observable is the received laser waveform (Dubayah et al., 2020a). The 
waveform represents the vertical distribution of intercepted surfaces within the extent of the 
illuminated laser footprint, and is available as the GEDI level-1B (GEDI01_B) data product 
(Dubayah et al., 2021). Estimating aboveground biomass density (AGBD) using GEDI data 
requires algorithms that process GEDI01_B waveforms to quantify relative height (RH) metrics. 
RH metrics define the percentage of the received laser waveform intensity that is less than a 
given height, where height is computed relative to the elevation of the lowest mode in the 
waveform. RH metrics are estimated in the presence of measurement uncertainty, including 
varying atmospheric conditions and solar background radiation. This uncertainty propagates 
through GEDI level-2A (GEDI02_A) RH metrics that are used to predict AGBD (Dubayah et al., 
2020b).  

The first release of the GEDI level-4A (GEDI04_A) data product is based on Version 1 
of GEDI02_A (Dubayah et al., 2020b), and uses one of six algorithm setting groups to interpret 
the received waveform and identify the elevation of the lowest mode (Hofton and Blair, 2020). 
The Version 1 of GEDI04_A uses linear statistical models selected from an ensemble of 
candidates that predict AGBD as a function of one or more RH metrics. GEDI04_A models are a 
required input to the 1 km GEDI level-4B (GEDI04_B) AGBD data product (Patterson et al., 
2019). 

2.	HISTORICAL	PERSPECTIVE	
Estimating AGBD using remote sensing requires aboveground biomass, 𝑀!, for a sample 

of trees that has been computed using an allometric model in a fixed area, such as a field-
inventory plot or lidar footprint. Summing the 𝑀! over all individuals in the plot or footprint and 
expressing it per unit ground area produces an estimate of AGBD. Coincident remote sensing 
data are used to develop an empirical relationship between AGBD and a remotely sensed 
measurement. This relationship can then be used to predict AGBD using remotely sensed data 
(Drake et al., 2002; Lefsky et al., 2002). 

Many remote sensing technologies have been used to quantify AGBD in forests, 
including passive optical sensors (Foody et al., 2003), Synthetic Aperture Radar systems 
(Mitchard et al., 2009; Saatchi et al., 2011), discrete return airborne lidar (Coops et al., 2007; 
Duncanson et al., 2015; Næsset et al., 2013), airborne waveform lidar systems (Drake et al., 
2002; Dubayah et al., 2010; Swatantran et al., 2011), and spaceborne waveform lidar (Boudreau 
et al., 2008; Lefsky et al., 2005; Rosette et al., 2013). Passive optical and SAR backscatter-based 
techniques typically saturate with increasing AGBD, with the degree of saturation depending on 
SAR wavelength (Huete et al., 1997; Luckman et al., 1998). Lidar consistently produces models 
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with the best performance in comparison to other technologies (Saatchi et al., 2011; Zolkos et al., 
2013). 

Most previous efforts have developed site-specific or regional relationships between 
AGBD and remote sensing measurements (Zolkos et al., 2013). GEDI faces a different 
challenge: it needs to develop models and algorithms that perform well throughout the entire 
observation domain of the ISS. Locally developed or regional relationships between AGBD and 
height are unlikely to perform well at locations outside the limited geographic extent of training 
data unless procedures are developed specifically to ensure transferability beyond the extent of 
calibration measurements (Friedl et al., 2002; Ploton et al., 2020). 

3.	STATISTICAL	MODEL	DEVELOPMENT	
Models to produce GEDI04_A were developed using field estimates of AGBD colocated 

with simulated GEDI waveforms derived from discrete-return airborne lidar (Blair and Hofton, 
1999; Hancock et al., 2019). The justification for using simulated GEDI waveforms is that few 
locations on the land surface are associated with field estimates of AGBD that could be used to 
train GEDI models. Because GEDI is a sampling mission and most field plots are small, GEDI 
data will not intersect most of these locations during the mission life. The GEDI approach to 
developing footprint AGBD models considers multiple candidates stratified by world region and 
plant functional type (PFT; Fig. 1) with different functional forms. 
An important objective for GEDI04_A models is that they are transferable outside the domain of 
calibration. Two key components are geographic transferability, meaning that the models can be 
extrapolated to locations outside the geographic extent of training data, and transferability from 
simulated to recorded GEDI waveforms. Transferring models from simulated to recorded GEDI 
waveforms requires that the models are robust in the presence of errors and uncertainties, 
including measurement errors associated with the GEDI02_A algorithm for derivation of RH 
metrics (Hofton and Blair, 2020). 
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Figure 1. Global stratification by five combinations of error-corrected and infilled MODIS MCD12Q1 V006 PFT 
(A) and world region (B) to produce GEDI04_A models. The box inset is the GEDI observation domain of 51.6 
degrees N to S latitude. DBT (deciduous broadleaf trees), DNT (deciduous needleleaf trees), EBT (evergreen 
broadleaf trees), ENT (evergreen needleleaf trees), GSW (grasses, shrubs and woodlands). Af (Africa), Au 
(Australia and Oceania), Eu (Europe), N-Am (North America north of southern Mexico), N-As (North Asia), S-Am 
(South America, Central America, southern Mexico, and the Caribbean), S-As (South Asia). 

 
GEDI04_A models were developed using a quality-filtered calibration data set that 

contains simulated GEDI waveforms: the Forest Structure and Biomass Database (FSBD). This 
data set is one of the most exhaustive ever compiled for remote sensing of AGBD, but important 
regions are under-represented. These include the forests of continental Asia, the evergreen 
broadleaf forests throughout the islands of Southeast Asia and north of Australia, and the 
worldwide distribution of savannas and deciduous tropical forests (Table 1). To quantify 
geographic transferability, candidate models were evaluated within sets of 5-degree grid cells 
that contain simulated GEDI waveforms with coincident field data. This approach sets aside data 
from one grid cell for testing, and trains the model using data within the remaining grid cells. 
This model is used to predict AGBD within the held-out grid cell, and the process is repeated for 
all grid cells within each stratum for all models under consideration (Fig. 2). 
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Table 1. Numbers of simulated GEDI waveforms used for footprint model development and testing. GEDI04_A 
models are stratified by combinations of world region and PFT derived from error-corrected and infilled MODIS 
data product MCD12Q1 V006. These are deciduous broadleaf trees (DBT; class 4), deciduous needleleaf trees 
(DNT; class 3), evergreen broadleaf trees (EBT, class 2), evergreen needleleaf trees (ENT, class 1), and grasses, 
shrubs and woodlands (GSW, classes 5, 6, and 11). 

 DBT DNT EBT ENT GSW Total 
Africa 490 0 834 0 6 1,330 
Australia and Oceania 0 0 213 142 65 420 
Europe 333 0 0 417 0 750 
North America 873 0 0 1,391 18 2,282 
North Asia 2 0 0 36 0 38 
South America 0 0 3,441 0 0 3,441 
South Asia 0 0 326 0 0 326 
Total 1,698 0 4,814 1,986 89 8,587 

 
 

 
Figure 2. Geographic distribution of the number of simulated GEDI waveforms in the current version of the FSBD 
within 5 degree grid cells.  

 

3.1.	Stratification	of	GEDI04_A	models	
Building globally representative GEDI04_A models requires stratification. The models 

are stratified by world region and PFT (Fig. 1, Table 1). World regions are the geologically 
defined continents of Africa and Europe. The South America world region is the continent of 
South America, Central America and the Caribbean islands, and geological North America south 
of southern Mexico. The Australia and Oceania world region is geological Australia and the 
island regions north of Australia on the east side of the Wallace line, which defines the floral and 
faunal boundary between Australia and Asia during the Pleistocene (Mayr, 1944). The islands of 
Micronesia, Melanesia, and Polynesia are associated with the Australia and Oceania world 
region regardless of political affiliation. The North America world region includes geological 
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North America north of southern Mexico. We divide the continent of Asia into north and south 
regions that approximately correspond to temperate and tropical forests (Fig 1.).  

GEDI04_A models are stratified by combinations of PFT derived from an infilled and 
error-corrected version MODIS data product MCD12Q1 V006 (Friedl et al., 2010, 2002). These 
are deciduous broadleaf trees (DBT; class 4), deciduous needleleaf trees (DNT; class 3), 
evergreen broadleaf trees (EBT, class 2), evergreen needleleaf trees (ENT, class 1), and grasses, 
shrubs, and woodlands (GSW, classes 5, 6, and 11; Fig. 1). 

3.2	Quality-control	filters	
The FSBD is a living data archive that grows over time as new data sets are assimilated 

and improvements are made to existing records. The unfiltered database currently contains 
31,414 simulated GEDI waveforms. After excluding incomplete projects and others that are 
inappropriate for GEDI (e.g., variable-radius plots), the unfiltered database contains 12,140 
simulated GEDI waveforms. After applying quality-control filters, the database used to develop 
Version 1 of the GEDI04_A data product contains 8,587 simulated waveforms from 21 countries 
(Table 1). Below we indicate the number of simulated waveforms that were flagged by each 
quality-control filter. Because some waveforms were flagged by multiple filters, the total number 
of flagged waveforms does not sum to the 3,553 waveforms that were removed from the 
unfiltered FSBD. 

3.2.1.	Incongruent	AGBD	and	height	
We excluded footprints when there was an incongruence between field-estimated AGBD 

and simulated RH98. In particular, when AGBD was < 1 Mg · ha-1 and RH98 was > 5 m, the 
footprint was excluded (113 footprints, or 0.93% of the unfiltered database). When AGBD was > 
150 Mg · ha-1 and RH98 was < 5 m, the footprint was excluded (7 footprints, or 0.06%). 

3.2.2.	Incongruent	AGBD	and	canopy-cover	fraction	(CCF)	
When CCF was 0 and RH98 > 5 m, the footprint was excluded (158 footprints, or 

1.30%). The GEDI along-beam laser intensity half-width results in estimates of RH100 close to 
4.5 m on surfaces of uniform reflectance with no elevation variation. One implication of this 
filter is that waveforms with 0 AGBD on sloped terrain were excluded from training data. 

3.2.3.	Incongruent	field-measured	or	modeled	height	and	lidar	height		
Some field data include measurements of individual tree height. When field 

measurements of height were not available, tree height was predicted using regional height-
diameter allometric scaling equations. This is necessary because some allometric models used to 
predict individual tree mass (𝑀!) require tree height. When the difference between measured or 
predicted height and RH98 was > 10 m, we excluded the footprint (997 footprints, or 8.21%). 

3.2.4.	Extrapolation	of	allometric	scaling	equations	beyond	measured	range	
Some of the allometric scaling models used to predict 𝑀! have a reported domain over 

which predictions are valid. These domains are defined by the data used to develop the equations 
(Chave et al., 2014; Forrester et al., 2017; Jenkins et al., 2003; Paul et al., 2016; Roxburgh et al., 
2019; Ung et al., 2008). If a footprint contained at least one tree with a diameter, height, or wood 
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specific gravity outside the range defined by the original authors, the footprint was excluded 
(640 footprints, or 5.27%). 

3.2.5.	Overlap	between	simulated	footprints	and	field	data	
Some simulated GEDI footprints are not completely contained within the boundaries of 

field-inventory plots. When this occurs, information about AGBD within the footprint is 
incomplete. Previous work has demonstrated that inclusion of these observations in statistical 
models causes relationships to be biased toward zero (Rejou-Mechain et al., 2014). If > 10% of 
the area of a simulated footprint was outside the boundaries of a field inventory plot, it was 
excluded from the FSBD (129 footprints, or 1.06%).  

3.2.6.	Large	sample	size	
Data in the FSBD were contributed by numerous researchers without whom the 

development of comprehensive GEDI04_A models would not be possible. The data are 
organized into spatial units by project and then by plot. A project is single contribution from a 
given research group. For example, La Selva, Costa Rica and Robson Creek, Australia are 
individual projects. Some projects contain multiple plots. Because the number and size of plots is 
variable, a small number of large, stem-mapped plots contribute disproportionately to the total 
number of observations in the FSBD. Because these observations would overwhelm model 
fitting and evaluation at the expense of plots with fewer samples (and broader geographic 
coverage), we placed an upper limit of 200 footprints on the contribution of each plot (not 
project) to the analysis-ready data. When the number of footprints in a plot was < 200, we 
accepted all footprints that passed other filters. When the number of footprints in a plot was > 
200 after applying other filters, we collected a stratified random sample of 200 footprints, where 
the per-footprint probability of inclusion was inversely proportional to the number of footprints 
in each of 20 equally spaced AGBD bins between the minimum and maximum AGBD in the 
plot, and probabilities were scaled so that each bin had an equal probability of contributing 
footprints to the sample. 

3.2.7.	Stratification	sample	size,	variable	selection,	and	multicollinearity	
We developed models for every combination of PFT and world region in Table 1 with > 50 

footprints, and for every PFT and world region independently. For example, the model for EBT 
in the South America world region was developed using 3,441 footprints, and the global ENT 
model was developed using 1,986 footprints. We considered models with square-root or natural-
logarithm transformations on the response and either the same transformation or no 
transformation on the predictors, for a total of four transformation scenarios. Candidate 
predictors were simulated RH metrics in increments of 10% and RH98 in addition to all possible 
two-way interactions.  

We refer to combinations of PFT and world region as prediction strata. When there are 
training data to develop a model for a given prediction stratum, we use that model within the 
given combination of PFT and world region. However, there are 25 out of 35 prediction strata 
represented by < 50 footprints in the filtered GEDI FSBD. In these cases, we use the 
corresponding PFT model in 18 cases and an alternative model stratified by PFT and world 
region in 7 cases. These 7 cases represent two EBT strata, two DBT strata, and three DNT strata.  
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In the EBT prediction stratum within Europe and North America we use the corresponding 
DBT by world region models. We assume that models trained using data from DBT in the 
northern-latitude temperate zone will perform better in these prediction strata than models 
developed using EBT data. In the current version of the filtered FSBD, EBT samples are 
exclusively tropical or Eucalyptus, and thus not representative of EBT in North America or 
Europe. In the DBT stratum within the South America world region and the country of Australia, 
we use the corresponding EBT model for the associated world region. In Australia, we assume 
the DBT classification is an error in MCD12Q1, because Australia lacks deciduous broadleaf 
forests. In the South America world region, DBT forests are likely to be tropical moist or dry 
forests that are similar to EBT of South America. Finally, we lack training data in DNT globally. 
We use a corresponding ENT by world region model for three of these strata (Australia, Europe, 
and North America). In the remaining DNT strata we lack a corresponding ENT by world region 
model and use the global ENT model. 

We computed all possible 1, 2, 3, and 4 variable predictor matrices. Two-way interactions 
were permitted in the absence of main effects. For example, we considered models that contained 
the interaction between RH50 and RH98, even when RH50 and RH98 were not included in the 
model as independent variables. We then eliminated predictor matrices that were multicollinear. 
We quantified multicollinearity by computing the Pearson correlation matrix for the candidate 
predictor matrix. If the maximum absolute value of the correlation coefficient was > 0.9, the 
candidate predictor matrix was excluded. We also computed the variance inflation factor (VIF). 
When VIF was > 10, the predictor matrix was excluded. For all candidates that passed both 
multicollinearity tests, we fit a weighted linear model by regressing the transformation of AGBD 
on the predictors. Weights were inversely proportional to the number of simulated footprints in 
each 5 degree grid cell used to quantify geographic transferability and scaled to sum to 1, so that 
training data in every grid cell contributed equally to the model, regardless of the number of 
observations within the grid cell. 

3.2.8.	Benchmarking	the	candidate	models	
The performance of all candidate models was evaluated by ranking every model in order of 

smallest mean residual error, smallest percentage root mean squared error, the maximum RH 
metric in the model, the number of coefficients in the model, and the number of RH metrics in 
the model. Mean residual error and RMSE were computed using geographically cross validated 
predictions, where mean residual error was:  

"
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∑ "
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The interior sum is the mean within bin j, where j is one of five quantile bins computed using 
predicted AGBD. Computing the mean residual error within quantile bins favors models that 
perform well across the range of AGBD. The percentage RMSE was computed according to: 

𝑅𝑀𝑆𝐸 = 100 × 6"
$
∑ 7𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑! − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑!,&8

($
!'"

"
$
∑ 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑!$
!'"9         (2)  



 
 

15 

The model selection favors candidates that contain larger valued RH metrics over models with 
similar mean residual error and RMSE than models that contain smaller valued RH metrics.      
This is because RH metrics closer to the ground are more sensitive to differences between 
simulated and real GEDI waveforms than RH metrics higher in the canopy. Reducing simulator 
error for smaller valued RH metrics using the on-orbit transmit pulse shape and characteristics of 
recorded GEDI noise will be addressed in a subsequent version of GEDI04_A. Models with 
fewer coefficients and fewer RH metrics are preferred based on parsimony. The number of 
coefficients is not directly proportional to the number of RH metrics because candidate models 
contain interactions. For example, a model that contains the interaction between RH98 and RH50 
as a single predictor contains two coefficients and two RH metrics. A model that contains only 
RH98 and RH50 as main effects contains three coefficients and two RH metrics. 

4.	ALGORITHM	DESCRIPTION	
The GEDI04_A data product is AGBD (Mg · ha-1) for individual GEDI footprints and the 

associated prediction uncertainty. The GEDI04_A algorithm ingests GEDI02_A data and 
external input variables (Fig. 2, Table 2). A prediction is generated for every GEDI02_A 
measurement for which it is possible to initiate the GEDI04_A algorithm. This is determined by 
the following six tests: rx_algrunflag = 1, rx_assess/quality_flag = 1, zcross > 0, toploc > 0, 
sensitivity > 0 and sensitivity < 1. Beam sensitivity is a measure of signal-to-noise that is related 
to the maximum canopy cover that can be penetrated by a waveform (Hofton and Blair, 2020). 
For more information about waveform processing, see the ATBD for GEDI transmit and receive 
waveform processing (Hofton and Blair, 2020). When these conditions are met, the GEDI04_A 
algorithm_run_flag = 1. The algorithm looks up the PFT, world region, and algorithm selection 
setting, then applies the selected model to scaled and transformed GEDI02_A RH metrics. 
Additional checks are performed to determine whether the GEDI04_A prediction is valid, and 
ancillary data are computed (Table 3). 

      After a prediction is generated, the algorithm determines the value of two quality 
flags: l2_quality flag and l4_quality flag. The l2_quality_flag indicates whether GEDI02_A input 
metrics met minimum quality standards for AGBD estimation. The l2_quality_flag = 1 when the 
footprint passes five tests: algorithm_run_flag = 1, surface_flag = 1, stale_return_flag = 0, 
sensitivity > 0.9, and rx_maxamp > 8 × sd_corrected. The surface_flag = 1 when 
elev_lowestmode is within 300 m of the TanDEM-X 90 DEM or mean sea surface. The 
stale_return_flag = 0 when the pulse detection algorithm detects a return signal > the detection 
threshold within the search window. The variable rx_maxamp is the maximum amplitude of the 
received waveform relative to the mean noise level, and sd_corrected is the corrected standard 
deviation of the waveform noise. The l4_quality_flag indicates whether each GEDI observation 
is representative of the conditions under which GEDI04_A models were developed. The 
l4_quality_flag = 1 when the footprint passes five tests: l2_quality_flag = 1, sensitivity > 0.95, 
landsat_water_persistence < 10, leaf_off_flag = 0, and urban_percentage < 50. The variable 
landsat_water_persistence indicates permanent water bodies. The leaf_off_flag indicates whether 
the footprint was collected under leaf-off or leaf-on conditions, and was derived for a 1 km 
EASE 2.0 grid using the VIIRS land surface phenology product VNP22Q2 (Zhang et al., 2016). 
leaf_off_flag = 1 when the footprint was collected after the onset of maximum greenness and 
before the midpoint of the senescence phase for the given 1 km grid cell.  
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Some GEDI04_A models use exclusively RH98 to predict AGBD. When this is the case, 
the l4_quality_flag does not consider leaf_off_flag. This is because the impact of leaf-off 
conditions is assumed to be minimal for RH98. The variable urban_percentage is from a 25 m 
global urban mask developed by the GEDI Science Team using the TerraSAR-X and TanDEM-
X global urban footprint (GUF) data product (Esch et al., 2013).  

Two diagnostic flags are provided independent of l4_quality_flag. The 
predictor_limit_flag and response_limit_flag indicate whether xvar or agbd are outside the range 
of training data for the given GEDI04_A model (Table 3). These flags have a value of 0 when 
the data are inside the range, a value of 1 when outside the lower bound, and a value of 2 when 
outside the upper bound. For predictor_limit_flag, values of 1 or 2 are triggered when at least 
one predictor is outside the range of training data.  

 
Figure 3. GEDI04_A algorithm flow. The GEDI04_A algorithm assimilates external data from GEDI02_A and 
other sources. A prediction is generated for every GEDI shot where algorithm_run_flag = 1. The algorithm looks up 
the GEDI04_A model using a world region grid and error-corrected and infilled MODIS MCD12Q1 PFT (Fig. 1). 
xvar is the transformed and scaled predictor data (GEDI02_A RH metrics). agbd and associated uncertainty are 
outputs of the GEDI04_A algorithm for every GEDI02_A algorithm selection setting.  
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4.1.	Scientific	theory	
All remote sensing estimates of AGBD rely on field measurements of individual tree 

structure (Clark and Kellner, 2012; Labriere et al., 2018). The mass of a given individual tree, 
𝑀!, is derived using allometric-scaling models developed from destructive harvesting and 
weighing of trees. In their most general form, these models assume that 𝑀! is a power function of 
trunk diameter, 𝑋!: 

 𝑀! ∝ 𝑎𝑋!) (3) 

Numerous investigations including hundreds of species have demonstrated that 𝑀! is a power 
function of tree size under a wide range of conditions (Beets et al., 2011; Brown, 1997; Chave et 
al., 2014; Forrester et al., 2017; Jenkins et al., 2003; Moore, 2010; Muukkonen, 2007; Paul et al., 
2016; Roxburgh et al., 2019; Ung et al., 2008). 

In practice, the variable indicated by 𝑋! is usually the diameter of the stem at breast 
height (DBH), defined as 1.3 m. Some models use tree height in addition to DBH, and others 
incorporate wood specific gravity, defined as oven-dried mass divided by wet volume 
(Williamson and Wiemann, 2010). Because it is not always possible to weigh an entire tree, 
wood samples are heated in an oven until mass stabilizes. The oven-dry mass per unit wet 
volume is computed from the samples, and measurements of DBH and height are used to 
compute total wood volume. Wood volume is multiplied by wood specific gravity to obtain 𝑀!. 
Repeating this process for many individual trees results in data that are used to estimate the 
parameters of equation (3). 

For every tree-record in the FSBD we used an allometric model appropriate to the given 
PFT and world region to predict 𝑀!. When there was more than one model that could be used for 
a given tree, we favored locally developed models over regional ones, as long as locally-
developed models were not site-specific. We also favored models with finer taxonomic 
resolution. In Australia we use eight allometric models developed by Paul et al. (2016) and 
Roxburgh et al. (2019). In New Zealand we use the model developed by Moore (2010) for Pinus 
radiata, and the model of Beets et al. (2011) for all other species. In North America we use the 
models of Jenkins et al. (2003) in the continental United States and the models of Ung et al. 
(2008) in Canada. In Europe we use the allometric models of Forrester et al. (2017). Throughout 
the tropics of South America, Africa and Asia we use the model of Chave et al. (2014).  

In some situations there was more than one candidate model to predict 𝑀! that met 
GEDI04_A requirements. For example, the models of Brown (1997) and Chave et al. (2014) 
have been used to predict 𝑀! in Central American evergreen broadleaf forests. The models of 
Muukkonen (2007) and Forrester et al. (2017) have been used in deciduous broadleaf and 
evergreen needleleaf forests of Europe. The models of Jenkins et al. (2003) and the component 
ratio method (CRM; Heath et al., 2009) have been used in North American forests of the United 
States of America. There is evidence that the CRM underestimates AGBD, especially in 
deciduous broadleaf forests of the eastern United States (Duncanson et al., 2017; Radtke et al., 
2017). However, the CRM produces values that are greater than Jenkins et al. (2003) in forests 
taller than 50 m. Choosing a model to predict 𝑀! is important and has resulted in large 
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discrepancies in estimates of AGBD from spaceborne remote sensing (Mitchard et al., 2013). 
Studies are needed that compare predictions of 𝑀! to harvested trees that have been dried and 
weighed to determine which allometric models have the best performance. Subsequent versions 
of GEDI04_A may use different allometric models.  

Some contributed data records for individual trees included measurements of height and 
diameter, but some measurements only contained diameter. When the allometric model required 
height as an input and a measured value was available, we used the measured value. When no 
height measurement was available, we predicted height in one of three ways. If some records 
contained estimates of height and diameter, we developed a local height-diameter relationship 
using complete data records. If no height measurements were available, we used the published 
height-diameter allometry of Muukkonen (2007) in Europe and the models of Feldpausch et al. 
(2011) elsewhere except the United States. In the United States, we developed a local height-
diameter allometry using United States Department of Agriculture Forest Inventory and Analysis 
(FIA) data within the same county. We then applied this locally developed model to predict tree 
height. 

4.2.	Scientific	assumptions	
We assume that allometric models generate accurate estimates of 𝑀! when applied to 

non-harvested trees. Whether this assumption is true has been debated. Harvested trees used to 
develop allometric scaling relationships are usually not randomly sampled (Clark and Kellner, 
2012), and validation studies that directly measure tree mass have demonstrated that scaling 
models systematically underestimate 𝑀! for large trees (e.g., Gonzalez de Tanago et al., 2018). 
An important area for future research is the development of improved allometric scaling models 
or no-allometry methods based on terrestrial laser scanning or drone lidar (Calders et al., 2020; 
Kellner et al., 2019). 

 GEDI04_A models treat footprints as circular areas with a radius of 12.5 m. In model 
training, 𝑀! is assigned to the footprint using stem positions. When the coordinates of a given 
stem are within the extent of the footprint, 𝑀!, as defined by a given allometric scaling model, is 
assigned to the footprint. In practice, there are four potential violations of this assumption. First, 
across-beam laser intensity follows a Gaussian distribution (Blair and Hofton, 1999). This means 
that intercepted surfaces near the center of the footprint have a stronger impact on the returned 
laser waveform than objects near the edges (Hyde et al., 2005). Second, because the across-beam 
laser intensity is Gaussian, the extent of the footprint is infinite. Intercepted surfaces > 12.5 m 
from the footprint center contribute a small amount to the intensity of the returned laser 
waveform. For example, assuming the across-beam σ is 5.5 m (Hancock et al., 2019), about 
2.3% of the returned laser energy on a uniform reflectance target with constant elevation is 
received from surfaces beyond the 12.5 m threshold. The third and fourth assumptions address 
the size of GEDI footprints relative to the trees within them. A tree whose stem is outside the 
12.5 m radius used to assign 𝑀! to individual footprints could contribute to the simulated 
waveform if parts of the tree crown are inside the footprint. Similarly, a tree whose stem 
coordinates are inside the footprint has all of 𝑀! assigned to the footprint, even though some 
branch or crown material (a portion of 𝑀!) may be outside the extent of the simulated GEDI 
waveform.  



 
 

19 

Collectively, the third and fourth assumptions are called the point-mass assumption, 
because they assume that 𝑀! is associated with a point location defined by the stem position. 
Violation of the point-mass assumption is likely to be important for very large trees that 
contribute to large values of AGBD (Knapp et al., 2021). For example, the crown diameter of a 
single large tree can exceed 50 m, or two times the nominal GEDI footprint diameter (Martínez 
Cano et al., 2019). 

 Simulated waveforms used to develop the GEDI04_A models were generated in the 
absence of sensor noise, where RH metrics are known exactly. RH metrics can be determined 
without error on simulated waveforms because they can be computed relative to true ground. 
Transferring these models from simulated to recorded GEDI data requires the assumption that 
ground-finding methods applied to recorded GEDI01_B waveforms are accurate, and that noise 
inherent to recorded GEDI data does not undermine the application of models developed on 
noiseless data. The first release of GEDI02_A RH metrics used a single algorithm to identify the 
elevation of the lowest mode, assumed to be ground elevation. This resulted in GEDI02_A 
ground elevation estimates that were biased high, and therefore in RH metrics that were biased 
low. Version 2 of GEDI02_A addressed this issue by using one of six algorithm settings to 
interpret the received waveform, rather than one (Hofton and Blair, 2020). Optimal settings for 
every combination of the GEDI04_A modified MCD12Q1 PFT and world region have been 
identified by the GEDI Science Team using a comprehensive dataset of GEDI-ALS crossovers. 
GEDI-ALS crossovers are locations where recorded GEDI data intersects discrete-return 
airborne lidar. At these locations we can remove systematic geolocation error in recorded GEDI 
data and compare GEDI waveforms to simulated waveforms developed using discrete-return 
lidar data. These comparisons enable selection of optimal algorithm settings by comparison to 
true ground. 

GEDI04_A models were developed using training data collected under leaf-on 
conditions. We use leaf_off_flag to identify GEDI waveforms that are likely to be under leaf-on 
conditions. However the use of this flag in drought deciduous tropical forests may be 
problematic. This is because some EBT forests experience periods of partial deciduousness 
during which some percentage of crowns are leafless while the canopy as a whole is green. For 
example, a study across a rainfall gradient in Panama found that 3.6 – 19.1% of crown area was 
leafless at peak deciduousness (Condit et al., 2000). All of the areas in this study are classified as 
EBT using MCD12Q1. This indicates that some GEDI footprints with leaf_off_flag = 0 may 
represent partial leaf-off conditions in practice. We assume that the GEDI04_A training data are 
representative of the variability introduced by such partial leaf-off conditions and that the impact 
of this variability is subsumed into the GEDI04_A model parameter uncertainty estimates. 

As noted in above, a final assumption is that GEDI04_A models are representative of the 
geographic conditions to which they will be applied. Although the GEDI FSBD is 
comprehensive, important regions are under-represented or missing entirely (Table 1). For 
example, we lack training data in continental Asia and throughout the GSW and DNT 
stratifications worldwide. In strata where training data are lacking, we assume that a model 
developed for a different stratum can be applied to that stratum to produce unbiased predictions 
of AGBD.  
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4.3.	Mathematical	theory	
 Because 𝑀! is modeled as a power function of stem diameter and height, model 
functional forms that linearize the relationship between AGBD and RH metrics and minimize 
heteroskedasticity are necessary. GEDI04_A considers four functional forms: (i) a square-root 
transformation on the response, (ii) a square-root transformation on the response and predictors, 
(iii) a natural logarithm transformation on the response, and (iv) a natural logarithm 
transformation on the response and predictors (Hansen et al., 2015). Back-transforming model 
predictions from the square-root or natural logarithm scale requires a back-transformation bias 
correction. For models using the natural logarithm transformation, we considered two bias 
corrections. The method originally developed by Baskerville (1972) transforms values from the 
natural logarithm scale to the original scale using: 

𝐴𝐺𝐵𝐷A !,& = 𝑒𝑥𝑝 B𝐗!𝛃& +
"
#
∑ +,-.(0123$)5𝐗$𝛃!8

%#
$&"

(
F          (4) 

The term 𝐗!𝛃& denotes predicted values for footprint 𝑖 model 𝑗 in natural logarithm units using 
matrix notation, where 𝐗! is a row vector of predictor variables including a 1 for the intercept 
and 𝛃& is column vector of coefficients. 𝐴𝐺𝐵𝐷! is the natural logarithm of AGBD from field data 
within the simulated GEDI footprint. 

 Snowdon (1991) developed a ratio estimator for bias correction that is less sensitive to 
violations of the assumptions of logarithmic normality. The back-transformed value is: 

𝐴𝐺𝐵𝐷A !,& = 𝐶& × 𝑒𝑥𝑝7𝐗!𝛃&8            (5) 

𝐶& is a bias-correction coefficient: 
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            (6) 

For models with a square-root transformation on the response, we used the bias-correction of 
Snowdon (1991), where the bias-correction coefficient is:  
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                       (7) 

The back-transformed value for models with a square-root transformation on the response is: 

𝐴𝐺𝐵𝐷A !,& = 𝐶& × 7𝐗!𝛃&8
(                                (8) 

 We provide prediction intervals and estimates of the standard error of the prediction for 
every predicted value of AGBD. The standard error of the prediction for GEDI footprint h is: 
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𝑆𝐸< = 6𝑀𝑆𝐸= + 𝐗<	Cov(𝛃)	𝐗<>            (9) 

Here, 𝑀𝑆𝐸= is the square of the residual standard error from the linear regression applied to 
prediction stratum 𝑘 containing GEDI footprint h, 𝐗< is the row vector of scaled and transformed 
RH metrics for GEDI footprint h, and Cov(𝛃) is the variance-covariance matrix for the model 
parameters in transformed units (i.e. natural-logarithm, square-root, or none). 

Prediction intervals are calculated for every predicted value of AGBD according to: 

𝐴𝐺𝐵𝐷A < ± 𝑡?"5'%,$5(@
× 𝑆𝐸<	                                                 (10) 

The 𝑡 multiplier is the value from a 𝑡 distribution with confidence level 𝛼 and 𝑛 − 2 degrees of 
freedom. Users can compute prediction intervals for arbitrary values of 𝛼 using the degrees of 
freedom within the model_data group of the GEDI04_A product. 

4.4.	Mathematical	assumptions	
 Fitting linear models to transformed AGBD requires the assumption that transformations 
linearize the relationship between AGBD and RH metrics and reduce heteroskedasticity. Both of 
these assumptions underpin the methods used to propagate model parameter uncertainty in 
GEDI04_A models to the 1 km GEDI04_B AGBD data product (Ståhl et al., 2011). We also 
assume that a single bias-correction coefficient produces an unbiased estimate of AGBD after 
back-transformation across the range of AGBD. Flewelling and Pienaar (1981) demonstrated that 
this assumption can be violated at large values of predicted AGBD.  

4.5.	Algorithm	input	variables	
 The GEDI04_A algorithm requires GEDI02_A inputs, an error-corrected and infilled 
version of MODIS MCD12Q1 V006 PFT classification, a world region identifier, and linear 
models for 35 prediction strata. The Version 1 GEDI04_A product uses Version 1 GEDI02_A as 
input. However, we applied the algorithm setting group selection being implemented in Version 
2 GEDI02_A to the release 1 GEDI02_A data on a per-footprint basis. The algorithm setting 
group used for each footprint is contained in the selected_algorithm variable in the root group of 
the GEDI04_A product. Note that a selected_algorithm value of 10 indicates algorithm setting 
group 5 has been used, but that the lowest detected mode is likely a noise detection. When this 
occurs, a higher mode has been used to calculate RH metrics (Hofton and Blair, 2020).  

 
Table 2. GEDI04_A input variables. Input variables are required to run the GEDI04_A algorithm. These variables 
are available for every footprint in the GEDI04_A data product. 

Input variable Source Description 

algorithm_run_flag GEDI04_A 
Flag = 1 when the GEDI04_A algorithm is run. This occurs 
when rx_algrunflag = 1, rx_assess/quality_flag = 1, zcross > 
0, toploc > 0, sensitivity > 0 and sensitivity < 1 
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bias_correction_name GEDI04_A Back-transform bias correction method  (Snowdon or 
Baskerville) 

bias_correction_value GEDI04_A Back-transform bias correction value 
dof GEDI04_A Degrees of freedom of the model used to predict agbd 
landsat_water_persistence GEDI02_A Landsat permanent water bodies 

leaf_off_flag GEDI02_A 
Flag indicating whether the observation was      recorded 
during leaf-off conditions in deciduous needleleaf or 
deciduous broadleaf forests (1 = leaf-off and 0 = leaf-on) 

l2_quality_flag GEDI04_A 
Flag = 1 when algorithm_run_flag = 1, surface_flag = 1, 
stale_return_flag = 0, sensitivity > 0.9, and rx_maxamp > 8 × 
sd_corrected 

urban_proportion TanDEM-X The proportion of land area within 
urban_focal_window_size that is urban land cover 

par GEDI04_A Linear model parameters to predict agbd 

predict_stratum GEDI04_A 
Character ID of the prediction stratum name for the 1 km 
cell that contains the footprint (e.g., DBT_Af = deciduous 
broadleaf trees in Africa) 

rh_index GEDI04_A Index of the RH metrics used as predictors 
rse GEDI04_A Residual standard error of the model used to predict AGBD 

xvar GEDI04_A RH metric predictor variables using the optimal algorithm 
setting (transform and offset have been applied) 

rx_algrunflag GEDI02_A Flag that indicates error run of the received waveform 
algorithm using selected settings (0 = good) 

rx_assess/quality_flag GEDI02_A Flag that indicates a good waveform based on assess 
parameters (0 = good) 

rx_maxamp GEDI02_A Maximum amplitude of the rxwaveform relative to the 
mean noise level 

sd_corrected GEDI01_B Noise standard deviation 

stale_return_flag GEDI02_A 
Flag = 0 when the pulse detection algorithm detects a 
return signal > the detection threshold within the search 
window 

surface_flag GEDI02_A Flag = 1 when elev_lowestmode is within 300 m of the 
TanDEM-X 90 DEM or mean sea surface 

vcov GEDI04_A Variance-covariance matrix of model parameters in 
transformed units (square root or natural logarithm) 

xvar_aN GEDI04_A RH metric predictor variables using algorithm setting N 
(transform and offset have been applied) 

x_transform GEDI04_A Transformation applied to the predictor variables (square 
root, natural logarithm, or none) 

y_transform GEDI04_A Transformation applied to the response variable (square 
root or natural logarithm) 

zcross GEDI01_B Sample number of the bin of the center the lowest mode 
above noise level 

 

4.6.	Algorithm	output	variables	
 The GEDI04_A algorithm outputs predicted AGBD in original (Mg · ha-1) and 
transformed units, associated prediction intervals, the standard error of the prediction, quality 
flags, and other ancillary information (Table 3). The algorithm produces these data for every 
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algorithm selection setting and identifies the best selection setting for each waveform. For 
models that contain exclusively RH98 as a predictor, the l4a_quality_flag = 1 (good) when 
l2_quality_flag = 1, sensitivity > 0.95, landsat_water_persistence < 10, and urban_percentage < 
50. When there is more than one predictor, the l4_quality_flag also requires leaf_off_flag = 0, 
which indicates leaf-on conditions. 

 
Table 3. GEDI04_A output variables. Output variables are produced by GEDI04_A algorithm. These variables are 
available for every footprint in the GEDI04_A data product, except alpha which is an attribute of the 
agbd_prediction group for the beam. 

Output variable Units Description 
agbd Mg · ha-1 Predicted AGBD using the optimal algorithm setting 
agbd_aN Mg · ha-1 Predicted AGBD using algorithm setting N 
agbd_pi_lower Mg · ha-1 Lower prediction interval for agbd, given alpha 
agbd_pi_lower_aN Mg · ha-1 ● Lower prediction interval for agbd_aN, given alpha 
agbd_pi_upper Mg · ha-1 ● Upper prediction interval for agbd, given alpha 
agbd_pi_upper_aN Mg · ha-1 Upper prediction interval for agbd_aN, given alpha 
agbd_se Mg · ha-1 The standard error of the agbd prediction 

agbd_se_aN Mg · ha-1 The standard error of the agbd_aN prediction using 
algorithm setting N 

agbd_t - Predicted AGBD in transformed units (square root or 
natural logarithm 

agbd_t_aN - Predicted AGBD in transformed units (square root or 
natural logarithm) using algorithm setting N 

agbd_t_se - Standard error of the agbt_t prediction in transformed 
units 

agbd_t_se_aN - Standard error of the agbt_t prediction in transformed 
units using algorithm setting N 

alpha probability Significance level used for calculation of prediction 
intervals 

l2_quality_flag - 
Flag = 1 when algorithm_run_flag = 1, surface_flag = 1, 
stale_return_flag = 0, sensitivity > 0.9, and rx_maxamp > 8 
× sd_corrected 

l4_quality_flag - 
Flag = 1 when l2_quality_flag = 1, sensitivity > 0.95, 
landsat_water_persistence < 10, leaf_off_flag = 0, and 
urban_percentage < 50 

predictor_limit_flag - 

Flag that indicates whether any of xvar are outside the 
range observed in training data for the given model using 
the optimal algorithm setting (0 = in bounds, 1 = below, 2 = 
above) 

predictor_limit_flag_aN - 
Flag that indicates whether any of xvar_aN are outside the 
range observed in training data for the given model using 
algorithm setting N (0 = in bounds, 1 = below, 2 = above) 

response_limit_flag - 

Flag that indicates whether agbd is outside the range 
observed in training data for the given model using the 
optimal algorithm setting (0 = in bounds, 1 = below, 2 = 
above) 
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response_limit_flag_aN - 
Flag that indicates whether agbd_aN is outside the range 
observed in training data for the given model using the 
algorithm setting N (0 = in bounds, 1 = below, 2 = above)   

5.	ALGORITHM	IMPLEMENTATIONS	
 The software that generates the GEDI04_A product was implemented at the GEDI 
Science Office at the Department of Geographical Sciences, University of Maryland, College 
Park (UMD), in collaboration with the GEDI Science Data Processing System at the NASA 
Goddard Space Flight Center (GSFC) in Greenbelt, Maryland and the Institute at Brown for 
Environment and Society (IBES) at Brown University. 

6.	ALGORITHM	USAGE	CONSTRAINTS	
 There are no algorithm usage constraints. 

7.	PERFORMANCE	ASSESSMENT	VALIDATION	
7.1.	Performance	assessment	validation	methods	
 The performance of GEDI04_A models is being assessed using a comprehensive 
database of GEDI-ALS crossovers and other GEDI data. By removing systematic geolocation 
error in GEDI data, transferability of GEDI04_A models from simulated to recorded GEDI data 
can be tested. 

7.2.	Performance	assessment	validation	uncertainties	
 Coincident GEDI waveforms and discrete-return airborne lidar exist for a sample of 
locations worldwide, but do not provide a systematic or random sample of the land surface 
within the GEDI domain. 

8.	DATA	ACCESS	
8.1.	Data	access	input	data	
 Input predictors and selected model data are publicly available and contained with the 
GEDI04_A data product, which is accessible through the Oak Ridge National Laboratory 
Distributed Archive Center (ORNL DAAC). 

8.2.	Data	access	output	data	
The GEDI04_A data product is publicly available and accessible through ORNL DAAC. 

8.3.	Data	access	related	URLs	
 Level-4 GEDI data products are available through the ORNL DAAC: 
https://daac.ornl.gov 
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