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Summary

This dataset provides gridded average annual wetland salinity concentrations in practical salinity units (PSU) at 30-meter resolution within 24
coastal estuary sites in the United States predicted for 2020. Salinity in estuaries can serve as a proxy for sulfate concentration, which can
inhibit methanogenesis. Data were derived from a hybrid approach to mapping salinity as a continuous variable using a combination of
physical watershed and stream characteristics, optical remote sensing based on vegetation characteristics, and climate variables. Data are
provided in cloud-optimized GeoTIFF format covering 33 Hydrologic Unit Code 8-digit (HUC8) watersheds to the extent of palustrine and
estuarine wetlands as defined by NOAA's 2016 Coastal Change Analysis Program (C-CAP) Coastal Land Cover layer. Additionally, model outputs
are provided in comma separated values (CSV) files, and code scripts are provided in a compressed (*.zip) file.

This dataset includes 37 files: 33 in cloud-optimized GeoTIFF (*.tif) format, three in comma separated values (*.csv) format, and one file in
compressed (*.zip) format.
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Figure 1. Salinity modeled in practical salinity units to the Sapelo Island National Estuarine Research Reserve watershed in coastal Georgia,
u.s.
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1. Dataset Overview

This dataset provides gridded average annual wetland salinity concentrations in practical salinity units (PSU) at 30-meter resolution within 24
coastal estuary sites in the United States predicted for 2020. Salinity in estuaries can serve as a proxy for sulfate concentration, which can
inhibit methanogenesis. Data were derived from a hybrid approach to mapping salinity as a continuous variable using a combination of
physical watershed and stream characteristics, optical remote sensing based on vegetation characteristics, and climate variables. Data are
provided in cloud-optimized GeoTIFF format covering 33 Hydrologic Unit Code 8-digit (HUC8) watersheds to the extent of palustrine and
estuarine wetlands as defined by NOAA's 2016 Coastal Change Analysis Program (C-CAP) Coastal Land Cover layer. Additionally, model outputs
are provided in comma separated values (CSV) files, and code scripts are provided in a compressed (*.zip) file.

Project: Carbon Monitoring System

The NASA Carbon Monitoring System (CMS) is designed to make significant contributions in characterizing, quantifying, understanding, and
predicting the evolution of global carbon sources and sinks through improved monitoring of carbon stocks and fluxes. The System will use the
full range of NASA satellite observations and modeling/analysis capabilities to establish the accuracy, quantitative uncertainties, and utility of
products for supporting national and international policy, regulatory, and management activities. CMS will maintain a global emphasis while
providing finer scale regional information, utilizing space-based and surface-based data and will rapidly initiate generation and distribution of
products both for user evaluation and to inform near-term policy development and planning.

Acknowledgment:

This Carbon Monitoring Systems project was supported primarily by NASA's Carbon Monitoring System program (grant 80NSSC20K0084).

2. Data Characteristics

Spatial Coverage: Tidal wetlands within the contiguous United States
Spatial Resolution: 30 m

Temporal Coverage: 2020-01-01 to 2020-12-31

Temporal Resolution: One-time estimate

Study Areas: Latitude and longitude are given in decimal degrees.

Site Westernmost Easternmost Northernmost Southernmost
Longitude Longitude Latitude Latitude

Conterminous United 12471 69.47 48.81 26.32

States

Data File Information

This dataset includes 33 cloud-optimized GeoTIFF (*.tif) files of modeled salinity rasters, three comma separated values (*.csv) files of model
outputs, and one compressed (*.zip) file of code scripts.

GeoTIFF modeled salinity rasters

There are 33 modeled salinity rasters representing 24 sites in units of practical salinity units for the year 2020 (Table 5). Each file covers one
HUC8 watershed to the extent of palustrine and estuarine wetlands as defined by NOAA’s 2016 Coastal Change Analysis Program (C-CAP)
Coastal Land Cover layer. Each raster consists of a single band, which represents modeled salinity in units of practical salinity units (PSU, grams
salt per 1000 grams water). Pixels not identified as wetlands are assigned a numeric value of -9999.

Files are named: salinity HUC8 2020_psu.tif, where HUC8is the 8-digit HUCS8 identifier. They have these characteristics:

Projection: NAD83 / Conus Albers (EPSG: 5070)
No data value: -9999

Bands: 1

Map units: Meters

Spatial resolution: 30 m

Comma separated values (CSV) files

model_variable_importance.csv contains the ranked importance of the final predictors used in the model.

salinity_predictions_vs_observations.csv is a compilation of observed salinity and model predictions, including residuals, and calibration and
validation specific root mean square error and R-squared.

salinity_sampled_calibration_validation_2020.csv holds model training and testing data sampled to all initially determined predictors.
Missing values are represented by ‘-9999’.

Table 1. Data dictionary for model_variable_importance.csv

Variable Units Description
Variable - Predictor variable name
Importance - Relative importance of variable in the machine learning model\

Table 2. Data dictionary for salinity_predictions_vs_observations.csv

Variable ‘ Units ‘ Description
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Index - Row number

Predicted_salinity_psu PSU | Model-predicted practical salinity units (PSU): (g salt) / (kg water)

Observed_salinity_psu PSU | Observed practical salinity units

Calibration_or_validation Whether the observation was used for model calibration or training

Rmse PSU | Root-mean square error of predicted versus observed linear regression.
Rsquare 1 RZ, or fraction of total variance explained, by predicted versus observed linear regression.
Residual PSU | Residual variance of predicted versus observed linear regression.

Table 3. Data dictionary for salinity_sampled_calibration_validation_2020.csv.

Variable Units Description

Index Row number

Pathlength m Upstream distance (m)

Avg_annual_pr_gridmet | mm Average annual precipitation (mm)

Avg_annual_t_gridmet K Average annual temperature in degrees Kelvin

Blue 1 Surface reflectance (0.452-0.512 pm Landsat, 496.6nm (S2A) / 492.1nm (S2B)
Sentinel)

Elevation_3dep m Elevation (m)

Evi 1 Enhanced Vegetation Index (EVI)

Green 1 Surfa.\ce reflectance (SR) (0.533-0.590 um Landsat, 560nm (S2A) / 559nm (S2B)
Sentinel)

Nir 1 Near infrared surface reflectance (0.851-0.879 um Landsat, 835.1nm (S2A) /
833nm (S2B) Sentinel)

Peak_evi 1 Maximum EVI for pixel in 2020

Red 1 Surface reflectance (0.636-0.673 um Landsat, 664.5nm (S2A) / 665nm (S2B)
Sentinel)

Savi 1 Soil Adjusted Vegetation Index

Sal_mean_mouth PSU Salinity at the mouth of the network in PSU

Slope_3dep Slope (unitless)

Swirl 1 Shortwavg Infrared 1 SR (1.566-1.651 um Landsat, 1613.7nm (S2A) / 1610.4nm
(S2B) Sentinel)

Swir2 1 Shortwavg Infrared 2 SR (2.107-2.294 um Landsat, 2202.4nm (S2A) / 2185.7nm
(S2B) Sentinel)

Thvi_gb 1 Two-Band Vegetation Index (Green-Blu)

Thbvi_rb 1 Two-Band Vegetation Index (Red-Blue)

Thvi_rg 1 Two-Band Vegetation Index (Red-Green)

Tidal_amp_kriged_mouth | m Tidal Amplitude at Network Outlet (m)

Totdasqgkm_mouth km?2 Total drainage area at Network Outlet (km2)

Wdrvi_2 1 Wide Dynamic Range Vegetation Index (0.2)

Wdrvi_5 1 Wide Dynamic Range Vegetation Index (0.5)

Source - Code indicating the source that the data point originated from.

Gauge_id - Unique identifier indicating unique sampling locations.

Gauge_type ) Code indicating the type of measurement, surface water, marsh well, or
porewater sample.

Observed_salinity_psu PSU Observed practical salinity units

Year YYYY Year of aggregation.

Sd PSU Standard deviation of practical salinity units summarized as an annual average.

N 1 Number of observations summarized as an annual average.

Longitude degrees_east | Longitude in decimal degrees

Latitude degrees_north | Latitude in decimal degrees




Watershed - Watershed name

States - US states inside boundary

Calibration_or_validation Whether the observation was used for model calibration or training

Watershed_left_out - Whether the total watershed was left out of the calibration data

Index_left_out - Whether the individual sampling location was left out of the calibration data

Code Scripts (*.zip)

There is one compressed (*.zip) file, salinity_scripts_2020.zip, containing R, Google Earth Engine (GEE), and Python (converted from ArcGIS Pro
Model Builder) scripts used to develop the GeoTIFF and CSV files. For details on the contents and structure, please see README.txt, which is
included inside the compressed file.

3. Application and Derivation

Coastal wetlands can store carbon and emit methane, and restoration efforts are also capable of reducing their emissions (Holmquist et al.,
2018). The effect of uncertainty of palustrine and estuarine methane emissions on the National Greenhouse Gas Inventory (NGGI) is particularly
high, so methane mapping is an important step towards improved forecasting. This dataset utilized a geographically diverse synthesis of
salinity, because it is much more readily observed than sulfate or methane directly, to model salinity conditions with the intent of deriving
improved methane quantifications.

4. Quality Assessment

The synthesis dataset was partitioned such that approximately 80% (1,376 observations) were used in model calibration, while the remaining
data (323) was withheld. Ten percent of the total HUC8 watersheds, and 10% of the total points were randomly selected to be validation data

and used to assess the effects of the proximity of calibration data on validation statistics. This assessment produced a root mean square error
(RMSE) on the validation subset of 4.94 PSU. The linear regression between the observed and predicted salinity values of the validation subset

produced a coefficient of determination (R2) value of 0.764.
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Figure 2. Validation subset predictions compared against observed salinity (PSU) for the random forest model with and without logarithmic
transformations applied to select predictors. Lines represent a perfect 1:1 ratio.

The decision to apply the log-transformation to the salinity response variable, salinity kriged to tidal amplitude, and total drainage area
produced a trade-off between overall model performance and model performance across the range of salinity most important for methane
predictions. The model without the log transformations performed better; the RMSE of the validation subset decreased from 4.94 to 4.76.
Model improvements were mixed as R? decreased from 0.764 to 0.709 for the non-log transformed version. When binning RMSE by 1 psu
increments, the log-transformed model performed better across the lowest salinity concentrations (Figure 3). At or below 10 PSU, the RMSE of
the log-transformed model was 2.31 PSU compared to 3.79 PSU in the non-log transformed model (Figure 3). Because methane emissions
sharply increase between mesohaline (18 to 5 PSU) and oligohaline (0.5 to 5 PSU) salinities and are virtually non-existent at or above 18 PSU
(IPCC, 2014), precision below 18 PSU, especially below 5 PSU, is vital. Given mixed model performance and the importance of low-salinity



predictions, the log-transformed algorithm was utilized to prioritize accurately mapping the important 5 PSU transitional zone over predicting
a broader range of salinities.
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Figure 3. Model performance, indicated by the RMSE between observed salinity and predicted salinity in 1 PSU bin increments, with and
without select logarithmically transformed predictors.

Independent validation also showed that the algorithm slightly under-predicted salinity relative to observations (Figure 2). This may be
because the calibration dataset was skewed towards low-concentration observations (Figure 4). There were also limited ocean salinity
observations (2,383 observations) available to krige oceanic salinity to stream mouths and limited quantity and dispersal along the Pacific
coast.
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Figure 4. Most synthesized salinity observations were under 5 practical salinity units (PSU).

5. Data Acquisition, Materials, and Methods

The workflow for assembling the calibration and validation data, as well as generating the remote sensing products is summarized in Figure 5.



Figure 5. Summary of steps of data synthesis and remote sensing and GIS workflow.

Observations of porewater, marsh well, and surface water surface salinity were synthesized from multiple sources for the purpose of model
calibration and validation (Figure 5). These observations were sourced from the following sources: a synthesis of disaggregated porewater
measurements by Arias-Ortiz et al. (2024b); the Chesapeake Bay Interpretive Buoy System (CBIBS) (NOAA, 2024b); the Louisiana Coastwide
Reference Monitoring system (CPRA, 2024); a porewater sampling campaign by Koontz et. al. (2024); data from Krauss et al. (2016); the National
Oceanic and Atmospheric Association’s Physical Oceanic Data (NOAA, 2024a), National Data Buoy Center (NDBC) (NOAA, 2023), and the
National Estuarine Research Reserve System (NERRS, 2024) System-wide Monitoring Program (SWMP) (2024); the US Geological Survey’s
(USGS) National Water Information System (NWIS) (USGS 1994), queried for salinity and conductivity data, and a regular water quality
sampling cruise of San Francisco Bay (Schraga and Cloern, 2017); the Global Change Research Wetland (GCREW) (Cheng et al., 2024a, 2024b;
Megonigal et al., 2024); Wilson et al. (2015); and the Environmental Protection Agencies (EPAs) Water Quality Portal (EPA 2013).

All observations were assigned dates and times, positional information (latitude and longitude), and were assigned unique identifiers for the
data source of origin, the study of origin for data sources, which synthesized multiple studies, and the type of observation (porewater, marsh
well measurement, or surface water). Any conductivity measurements were used to estimate salinity equivalents in PSU using the USGS
Coastal Salinity Index R package (McCloskey, 2024). All time-series were simplified to single values per discrete spatial sampling point, mean
annual salinities. The number of individual observations was recorded.

Data points were analyzed separately based on their origin (Figure 5). Data from marsh porewater draws, and loggers within wells were added
to the calibration and validation dataset without modification and amounted to 1,699 observations. Surface water salinity measurements
underwent further sorting and treatment.

Surface water data were further sorted into whether they overlapped open water or stream networks based on our GIS analysis (Figure 5).
National Hydrology Dataset (NHD) ‘catchment’ polygons (USGS, 2019) were utilized to determine if surface water points were from the open
water (ocean or bay), or were from along stream networks. Observations of open water data (n=2,383) were used to create one of the physical
layers in the random forest model, salinity at the mouth of the stream network. Surface water data along stream networks were further treated
so that they were equivalent in value and position to marsh data and were used as response data.

For surface water used as response data, extra transformation was used to estimate marsh equivalent salinity from open water salinity and to
adjust latitude and longitude from open water to the nearest mapped wetland (Figure 5). First, marsh equivalent salinity was estimated from
adjacent open water salinity based on a subset of paired marsh surface well or porewater and surface water observations in the database and a
linear regression. Both values were log-transformed. Overall marsh salinity tended to have slightly higher, and less variable, salinity compared
to adjacent open water (Figure 6).
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Figure 6. A linear regression model was fit to adjacent surface and marsh salinity observations to derive marsh salinity concentrations from nearby surface
observations.

Next, surface observations were snapped to their nearest wetland pixel according to the Coastal Change Analysis Program (C-CAP) (NOAA,
2016) converting given a distance threshold of 90 to 120 m (Figure 5). Open water observations were paired with C-CAP wetlands, which were a
maximum of 120 m away (four 30 m pixel widths), to ensure that the inferred wetland observation was associated with the true surface water
observation. A minimum threshold of 90 m (three pixel-widths) distance was set so that the inferred observations would be more likely to be
associated with interior wetlands, and not bias the analysis towards wetland edges.

The calibration-validation dataset was used to train a random forest algorithm that used 22 potential predictors as inputs (Table 4). A hybrid
approach was used that consisted of physical GIS layers representing phenomena likely to influence estuary length and salinity, optical remote
sensing indices that contain information on plant community and health, and climate variables for temperature and precipitation.

Table 4. The 22 predictor variables originally chosen for consideration.

. N q Included
Predictor Description Index Equation in Model
pathlength Upstream distance (m) TRUE
avg_annual_pr_gridmet | Average annual precipitation (mm) TRUE
avg_annual_t_gridmet Average annual temperature (K) TRUE

Surface reflectance (0.452-0.512 pm Landsat, 496.6nm
blue (S2A) / 492.1nm (S2B) Sentinel) FALSE
elevation_3dep Elevation (m) TRUE
: . 2.5*((NIR-RED) / (NIR+6*
evi Enhanced Vegetation Index RED - 7.5 * BLUE + 1))
Surface reflectance (0.533-0.590 um Landsat, 560nm
green (S2A) / 559nm (S2B) Sentinel) L
nir Near infrared SR (0.851-0.879 um Landsat, 835.1nm TRUE
(S2A) / 833nm (S2B) Sentinel)
peak_evi /Maximum EVI for pixel in 2020 TRUE
Surface reflectance (0.636-0.673 um Landsat, 664.5nm
red (S2A) / 665nm (S2B) Sentinel) FALSE
savi Soil Adjusted Vegetation Index &NOIRS) A e f (5 (iAD FALSE
sal_mean_mouth Salinity at the mouth of the network in PSU TRUE
slope_3dep /Slope (unitless) TRUE
. Shortwave Infrared 1 SR (1.566-1.651 um Landsat,
swirl 1613.7nm (S2A) / 1610.4nm (S2B) Sentinel) FALSE
swir2 Shortwave Infrared 2 SR (2.107-2.294 um Landsat, TRUE
2202.4nm (S2A) / 2185.7nm (S2B) Sentinel)
tbvi_gb Two-Band Vegetation Index (Green-Blue) gm%N -BLUE) / (GREEN + TRUE




tbvi_rb Two-Band Vegetation Index (Red-Blue) (RED - BLUE) / (RED + BLUE) | TRUE
tbvi_rg Two-Band Vegetation Index (Red-Green) (RED - GREEN) / (RED + TRUE
GREEN)

tidal_amp_kriged_mouth | Tidal Amplitude at Network Outlet (m) TRUE

totdasgkm_mouth Total drainage area at Network Outlet TRUE

wdrvi_2 Wide Dynamic Range Vegetation ndex (0.2) 2 = 2oy e FALSE
- : NIR) + RED)

wdrvi_5 Wide Dynamic Range Vegetation Index (0.5) ((0.5*NIR) - RED) /((0.5* FALSE
- NIR) + RED)

The spatial predictors consisted of oceanic salinity, total drainage area, and tidal amplitude at the mouth of stream networks, and distance
upstream. Surface salinity observations from 2020 and intersecting ocean area features as defined by the National Hydrography Dataset (NHD)
(USGS, 2019) were taken from a previous salinity synthesis (Figure 5). Tidal amplitude was kriged from a synthesis of 996 National Water Level
Observation Network (NWLON) (NOAA, 2024c) and the Coastwide Reference Monitoring System (CRMS) water level observations made between
1970 and 2019 (CPRA, 2024). Outlets were defined as the point of intersection between NHD coastlines and the most downstream flowline in
tidal networks. Oceanic salinity and tidal amplitude were then kriged to each outlet and joined to their respective flowline networks in R. Total
upstream cumulative drainage area in square kilometers (TotDASqKm) and distance downstream in kilometers (Pathlength) are attributed to
each flowline in the NHD. The drainage area of each network’s terminating flowline was joined with upstream flowlines in the network, while
distance downstream was instead preserved for each reach. Flowlines were then converted into point features at the midpoint of each reach,
interpolated into wetlands via inverse distance weighting in ArcGIS Pro and exported to TIFF format. This step was completed to the extent of
C-CAP wetlands within each HUC8 watershed containing a calibration-validation data point.

Slope and elevation in meters were taken from the 3DEP’s LiDAR-based 10-m National Map (USGS, 2020). 3DEP predictors were equivalently
resampled from 10-m to the 30-m scale and projection of C-CAP.

Optical predictors were selected based on their importance in modeling tidal marshland aboveground biomass (Byrd et al., 2018), because
biomass was hypothesized to correlate with salinity, and that different plant communities could represent distinct hydrologic conditions
descriptive of salinity concentrations (Pennings et al., 2005). Surface reflectance and a suite of vegetation indices were retrieved from the
Landsat-8 Level 2, Collection 2, Tier 1 OLI ((USGS, 2013) and Sentinel-2 Level-2A MSI (ESA, 2015) image catalogs in GEE. The image catalogs were
first harmonized in GEE. This entailed applying cloud and cloud shadow masking, resampling Sentinel-2 resolution to match Landsat, and
adjusting Sentinel-2 band values to match Landsat according to Claverie et al. (2018). The two catalogs were merged and specral indices were
calculated (Table 4). Then image collections were reduced into a single median composite for all bands and a maximum annual composite for
enhanced vegetation index (EVI). Final images were resampled so that they were the equivalent scale and projection of C-CAP.

Average annual precipitation in millimeters and temperature in Kelvin were retrieved from gridMET (Sierra Nevada Research Institute
Climatology Lab; SNRI, 2024). Mean annual temperature was taken as the annual average of the daily average minimum and maximum
temperature. GridMet annual averages were resampled from 4-km to the 30-m scale and projection of C-CAP. The interpolated spatial
predictors were imported into GEE and composited with the optical, other physical, and climate predictors by HUC8, and then sampled to the
calibration-validation dataset.

The sampled predictors were reviewed for near zero variance and high correlation using caret, an R package designed for training classification
and regression models. Near zero-variance predictors can unproportionally exert excessive influence on the model (Kuhn, 2008). A predictor
would be considered zero-variance if its distribution exhibits a percent uniqueness, the proportion of distinct values out of the count of
observations, below 10%, and a frequency ratio, the ratio of the most and second most repeated value, exceeding 19, the defaults of caret’s
nearZeroVar() function. None of the predictors were found to meet these criteria; however, seven predictors were dropped for being highly
correlated (r>0.9). This is useful because the importance of correlated variables may be underreported.

After redundant predictor variables were removed, the model was calibrated, prediction surfaces were created, and variable importances were
calculated in GEE (Gorelick et al., 2017) using the smileRandomForest algorithm with 500 trees.

Distance upstream, maximum EVI, elevation, salinity at network outlets, and average annual temperature were, in order, the top five most
important predictors (Fig. 7). Slope had the lowest score and was substantially lower than the next lowest scoring predictor. The model was
then used to classify wetlands within the 33 HUC8 watersheds (Table 5). This produced a single-band raster in TIFF format for each HUC8 in
which salinity is presented in PSU. Pixels outside of C-CAP wetlands are assigned a numeric value of -9999.
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Figure 7. Variable importance of the model’s final predictors relative to the highest scoring variable.

Table 5. Key between HUCS8 codes and sites.

Site Name HUC8 Code
Apalachicola 03130014
Apalachicola 03130011
Atchafalaya 08080101
Atchafalaya 08090302
Blackbird Creek Reserve 02040205
/Chesapeake Bay, Virginia 02080106
Chesapeake Bay, Virginia 02080107
Chesapeake Bay, Virginia 02080108
Eden Landing 18050004
Elkhorn Slough 18060015
Grand Bay 03170009
Great Bay 01060003
Guana Tolomato Matanzas 03080201
Gulf Shores 03160205
Hudson River 02020008
Hudson River 02020006
Jacques Cousteau 02040301
Jug Bay 02060006
Mission-Aransas 12100404
Mission-Aransas 12100407
Mission-Aransas 12100405
Mission-Aransas 12110202
Monie Bay 02080110
Narragansett Bay 01090004
North Inlet-Winyah Bay 03040208




North Inlet-Winyah Bay 03040207
Rush Ranch 18050001
Sapelo Island 03060204
Smithsonian Environmental Research Center 02060004
South Slough 17100304
St. Jones Reserve 02040207
Tijuana River 18070305
Waquoit Bay 01090002

6. Data Access

These data are available through the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).
Wetland Salinity Maps of Select Estuary Sites in the United States, 2020

Contact for Data Center Access Information:

e E-mail: uso@daac.ornl.gov
e Telephone: +1 (865) 241-3952
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