
Supplemental Information for: Spatial Data on U.S. Coastal Wetland Greenhouse Gas 

Inventory Uncertainty 

 

These supplemental materials and methods are included for convenience and clarity. The 

supplemental methods for creating a probabilistic mean higher high water spring (MHHWS) 

elevation map were also included in the supplemental information for the associated journal 

article (Holmquist et al Provisionally Accepted). The section on mapping total and sector level 

fluxes is unique to this documentation. 

 

1. Creating a Probabilistic Mean Higher High Water Spring Maps 

To create a probabilistic coastal lands map we utilized digital elevation models archived and 

aggregated by the NOAA sea-level rise viewer (NOAA 2016) (Supplemental Table 1). Some 

data sources for the San Joaquin Delta (Wang and Ateljevich 2012), Maryland State (Eastern 

Shore Regional GIS Cooperative n.d.), and the Northern Gulf of Mexico Region (USGS 2014) 

were not archived through the NOAA portal, so we cite the original data sources (Supplemental 

Table 1). All DEMs were relative the NAVD88 datum. In the rare cases in which units were not 

in meters relative to NAVD88, they were converted to m in ArcGIS Pro (Esri Inc. 2017). 

For the LiDAR maps we corrected for bias and propagated random error by calculating 

mean error and root mean square error from weighted averages from a literature review (Hladik 

et al 2013, Medeiros et al 2015, Buffington et al 2016, Holmquist et al in Prep). If a LiDAR pixel 

intersected a wetland as mapped by the Coastal Change Analysis Program (C-CAP) (NOAA 

2013) we applied an average 17.3 cm offset. 

To transform the NAVD88 datum of the LiDAR DEMs to a tidal datum, we used NOAA 

tide gauge data. For the NAVD88 to MHHW datum transformation, we used NOAA datums 

which had established MHHW relative to NAVD88 (NOAA 2017). To establish datum 

uncertainty we used NOAA’s reported standard errors for tidal datum transformation (NOAA 

n.d., n.d., n.d.). This included 705 gauges. To transform MHHW to MHHWS we calculated 

MHHWS offsets at gauges using NOAA high-low tide data (NOAA CO-OPS n.d.) and 

astronomical records of full and new moons (USNO n.d.). We assumed that the spring tides 

occur twice monthly and can have occur between one day before to two days after a full or new 

moon. We queried NOAA servers for all of those gauges over the most recent datum period for 

the gauge and represented MHHWS relative to MHHW as the mean offset over those time 

periods. We represent uncertainty in the datum itself by estimating the standard error of the 

mean (Eq. 1). There was a notable and precipitous increase in standard error for gauges that 

had few observations of spring tides, which we detected using a piecewise linear regression 

(Sonderegger 2012). So we excluded tide gauges from the analysis that had fewer than 31 

datapoints. 127 tide gauges were included in the MHHW to MHHWS transformation. 
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𝑠𝑑

√𝑛
 1. 

 

 In which: 

se = standard error of the mean 

sd = standard deviation 

n = sample size 



 

For the NAVD88 to MHHW transformation and MHHWS to MHHW offset we extrapolated point 

data to a 2-d surface using Empirical Bayesian Kriging (EBK) (Pilz and Spöck 2008, Krivoruchko 

2012). We reduced the resolution of both datum transformation layers 300 x 300 m, with pixel 

edges snapped to C-CAP’s dimensions. 

 Our goal in creating a probabilistic MHHWS layer was to reflect uncertainty in both the 

datums themselves (i.e. areas with lower-quality datums have greater uncertainty than areas 

with high-quality datums), as well as distance from gauges (areas further away from any gauge 

have greater uncertainty than those nearer). We calculated total propagated error for NAVD88 

measurement, MHHW transformation and MHHWS transformation. For the NAVD88 surface we 

used the weighted mean RMSE for wetland surfaces from multiple studies (Supplemental Table 

2). For tidal datum transformations we incorporated for two types of uncertainty: 1. uncertainty in 

the extrapolation process itself -- the standard error of prediction from the empirical bayesian 

kriging output -- and 2. uncertainty in the datums themselves (NOAA datum uncertainty report), 

also extrapolated from points to a 2-d surfaces using empirical bayesian kriging. EBKs were run 

in ArcGIS pro (Esri Inc. 2017) with a power semivariogram model, 100 maximum points for each 

local model, a local model area overlap factor of 1, 100 simulated semivariograms, a standard 

circular neighborhood with a radius of 15, and max and min neighbors of 15 and 10 

respectively. 

We calculated total propagated uncertainty in all of the transformations algebraically (Eq. 

2). We resampled raster resolutions of the DEMs to 30 x 30 m to match C-CAP. At the pixel 

level we calculated a Z-score according to Eq. 3 (Schmid et al 2013). We used the function ‘z2p’ 

in Python’s (Continuum Analytics, Inc 2017) NumPy package (NumPy Developers 2017) to 

calculate a ‘p value’ -- probability of a pixel being below MHHWS -- from the standard score. 
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In which: 

setotal(x,y)  = the total propagated uncertainty of the transformation for point x,y 

RMSELiDAR = the root-mean square error for LiDAR-based DEMs for marsh 

surfaces 

seMHHW and seMHHWS = the standard errors of the datums at point x,y 

sekrig.1 and sekrig.2 = the standard error of prediction resulting from the EBK 

process for MHHW and MHHWS respectively at point x,y 

 

𝑍(𝑥,𝑦)  =  
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𝑠𝑒𝑡𝑜𝑡𝑎𝑙 (𝑥,𝑦)
  3. 

In which: 

Z(x,y) = the standard score of point x,y 

Water surface(x,y) = elevation of MHHWS relative to NAVD88 at point (x,y)  

elevation(x,y) = elevation of the surface at point (x,y) relative to NAVD88 

 



The number of palustrine stable and change 2006-2011 category, excluding changes to and 

from estuarine wetlands, totaled to 111. For each of these categories we extracted values from 

the probabilistic inundation map using ‘extract by mask’ in ArcGIS Pro (Esri Inc. 2017). 

 

2. Creating Per-Pixel Total and Sector Fluxes, and Confidence Interval Maps 

We mapped the modeled CO2e fluxes for all relevant wetland pixels in the C-CAP data. For 

each C-CAP 2006 to 2011 land cover class we calculated the median of total flux at the scale of 

the entire contiguous United States by multiplying emissions factors by the estimated area at 

each iteration of a Monte Carlo analysis. We also separately calculated soil, biomass, and CH4 

contributions. We calculated the median, minimum (0.025 quantile) and maximum (0.975 

quantile) confidence intervals and the confidence interval range (0.975 quantile - 0.025 quantile) 

for the total fluxes, as well as separate soil, biomass, and methane sectors. In order to visualize 

this data at the scale of the mapped pixel we divided total flux by mapped areas. A table with 

those results was joined to the subset of the C-CAP 2006 to 2011 layer in ArcGIS Pro (Esri Inc. 

2017). This layer incorporated all land classes converting to and from wetlands that fell below a 

97.5% likelihood of being below the MHHWS tidal elevation. 
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