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Summary

This dataset provides mapped tidal wetland gross primary production (GPP) estimates (g C/m2/day) derived from multiple wetland
types at 250-m resolution across the conterminous United States at 16-day intervals from March 5, 2000, through November 17, 2019.
GPP was derived with the spatially explicit Blue Carbon (BC) model, which combined tidal wetland cover and field-based eddy
covariance (EC) tower GPP data into a single Bayesian framework and the Moderate Resolution Imaging Spectroradiometer (MODIS)
Enhanced Vegetation Index (EVI). Model development entailed determining the locations of and grouping of tidal wetlands into four
classes: woody mangroves, woody freshwater swamps, herbaceous salt marshes, and herbaceous freshwater wetlands. Tidal wetlands
are a critical component of global climate regulation. Tidal wetland-based carbon, or "blue carbon," is a valued resource that is
increasingly important for restoration and conservation purposes.

The Bayesian framework required the development of Light Use Efficiency (LUE) equations specific to tidal wetland classes and the
optimal values of a set of characteristics that quantify the controls of light and temperature on EC-derived GPP. The EC tower datasets
spanned multiple years across all seasons and the full range of possible light and temperature controls. The model was validated by
comparing its predicted GPP with GPP from the 10 EC tower sites. After validation, GPP was mapped across tidal wetlands at 16-day

intervals. Daily average per m?2 GPP was calculated within individual tidal wetland pixels. The predicted GPP by wetland class was
multiplied by the percent cover of each class in the pixel for the woody and herbaceous classes separately, and then the two were
summed to find the GPP in each pixel.

There are 454 data files in GeoTIFF (.tif) format at 250 m spatial resolution. This includes 453 files for tidal wetland gross primary
production (GPP) at 16-day intervals beginning March 5, 2000, through November 1, 2019. There is one file that describes the tidal
wetland area of each pixel.
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Figure 1. Example of average daily gross primary production (GPP) per m2 at 250 m resolution shown for wetlands in the North and
South Ten Thousand Islands in the Florida Everglades. Mapped values are an average of all 16-day periods from 2000-2019. Source:
Feagin et al., 2020
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1. Dataset Overview

This dataset provides mapped tidal wetland gross primary production (GPP) estimates (g C/m2/day) derived from multiple wetland
types at 250 m resolution across the conterminous United States at 16-day intervals from March 5, 2000, through November 17, 2019.
GPP was derived with the spatially explicit Blue Carbon (BC) model, which combined tidal wetland cover and field-based eddy
covariance (EC) tower GPP data into a single Bayesian framework and the Moderate Resolution Imaging Spectroradiometer

(MODIS) Enhanced Vegetation Index (EVI). Model development entailed determining the locations of and grouping of tidal wetlands into
four classes: woody mangroves, woody freshwater swamps, herbaceous salt marshes, and herbaceous freshwater wetlands. Tidal
wetlands are a critical component of global climate regulation. Tidal wetland-based carbon, or "blue carbon," is a valued resource that
is increasingly important for restoration and conservation purposes.

The Bayesian framework required the development of Light Use Efficiency (LUE) equations specific to tidal wetland classes and the
optimal values of a set of characteristics that quantify the controls of light and temperature on EC-derived GPP. The EC tower data sets
spanned multiple years across all seasons and the full range of possible light and temperature controls. The model was validated by
comparing its predicted GPP with GPP from the 10 EC tower sites. After validation, GPP was mapped across tidal wetlands at 16-day
intervals. Daily average per m2 GPP was calculated within individual tidal wetland pixels. The predicted GPP by wetland class was
multiplied by the percent cover of each class in the pixel for the woody and herbaceous classes separately, and then the two were
summed to find the GPP in each pixel.

Project: Carbon Monitoring System

The NASA Carbon Monitoring System (CMS) is designed to make significant contributions in characterizing, quantifying, understanding,
and predicting the evolution of global carbon sources and sinks through improved monitoring of carbon stocks and fluxes. The System
will use the full range of NASA satellite observations and modeling/analysis capabilities to establish the accuracy, quantitative
uncertainties, and utility of products for supporting national and international policy, regulatory, and management activities. CMS will
maintain a global emphasis while providing finer scale regional information, utilizing space-based and surface-based data and will
rapidly initiate generation and distribution of products both for user evaluation and to inform near-term policy development and
planning.
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2. Data Characteristics

Spatial Coverage: Tidal wetlands across the conterminous United States
Spatial Resolution: 250 m

Temporal Coverage: 2000-03-05 to 2019-11-17

Temporal Resolution: 16-day interval

Study Area: Latitude and longitude are given in decimal degrees.

Westernmost Easternmost Northernmost Southernmost

Longitude Longitude Latitude Latitude




‘ Continental

US ‘ -128.0256 -65.9019 47.69669 23.50166

Data File Information

There are 454 data files in GeoTIFF (.tif) format at 250 m spatial resolution. This includes 453 files for tidal wetland gross primary
production (GPP) at 16-day intervals from March 5, 2000, to November 1, 2019. There is one file that describes the tidal wetland area of
each pixel.

Table 1. Data file names and descriptions.

File names Units Description

Gross primary production (GPP) in grams of carbon per square meter

tidal_wetland_GPP_YYYY MM_DD.tif gC/mZ/d per day, where YYYY = 2000-2019, MM = month, DD = day.

The data files are proved at 16-day intervals beginning March 5, 2000,
with the last file dated November 1, 2019.

area_of_tidal_wetlands.tif m?2 Tidal wetland area within each 250 m resolution pixel.

Data File Details
For each GeoTIFF file,

Projection: WGS 84 / UTM zone 14N, EPSG:32614
Map units: meter
No data value: -9999

3. Application and Derivation

Tidal wetlands are a critical component of global climate regulation. Their GPP represents the total photosynthetic flux of CO2 between
the atmosphere and the surface on a per land area basis before any respiratory fluxes back to the atmosphere are removed. Tidal
wetland-based carbon, or "blue carbon," is a valued resource that is increasingly important for restoration and conservation purposes.

If a user wants to aggregate or sum the total tidal wetland GPP within or across pixels, then multiply the average GPP by the area of
tidal wetlands within each pixel using the data files provided.

4. Quality Assessment

Uncertainty and accuracy of the data were assessed in several ways. First, the BC model data were checked against field-derived EC
GPP data at 10 sites around the US; it produced an RMSE of 1.22 g C/m2/day, with an average error at 7% with a mean bias of nearly
zero. An internal interpolation procedure was assessed to have induced approximately 2.2% of this total error. The data were also
checked against other related datasets and heuristic calculations for consistency. More details on uncertainty and error can be found in
the associated publication by Feagin et al. (2020).

5. Data Acquisition, Materials, and Methods

GPP was estimated with the spatially-explicit BC model, which combined tidal wetland cover and field-based EC tower data into a
single Bayesian framework, and used a supercomputer network and remote sensing imagery (i.e. MODIS EVI; Didan 2015). The BC
model also included mixed pixels in areas not covered by MOD17 GPP product (Running et al., 2015), which comprised approximately
16.8% of tidal wetland GPP. The model approach applied seven basic steps, illustrated in Figure 2.
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Description of the steps in Figure 2

First, specific types of wetlands were defined based on mapping data and EC tower data availability (Table 2). The locations of all tidal
wetlands were identified and grouped into four separate classes: (1) woody mangroves, (2) woody freshwater swamps, (3) herbaceous
salt marshes, and (4) herbaceous freshwater wetlands. These four classes form a full factorial that includes all tidal wetlands. The
resulting high-resolution, resolution, vector-based dataset was composed of polygonal delineations. Hinson et al. (2017) provide more
details on the underlying dataset (downloadable from bluecarbon.tamu.edu), which is a refinement of the National Wetlands Inventory
and as such, its classification is based on the Cowardin system (Cowardin et al., 1979). In short, the definition of a tidal wetland in this
dataset is based on hydrologic considerations which are listed as specific modifiers (e.g., semi-permanently flooded tidal freshwater
wetland; Federal Geographic Data Committee, 2019). A MODIS grid was then overlaid on top of this vector data set and the area of each
tidal wetland class was determined within a 250 m pixel size. This step allowed the class affiliation to be identified and the percent of
each pixel occupied by each class, at the 250 m scale.

Second, to compute estimates of tidal wetland GPP at a given location and date, our approach with the BC model required input for
each of the variables outlined in equation 1 below:

GPP = e*iPAR*PAR (1)

For modeling LUE (equation 1), € required extensive parameterization within a hierarchical Bayesian statistical framework. This
framework required the development of LUE equations specific to tidal wetlands and the optimal values of a set of characteristics that
quantify the controls of light and temperature on EC-derived GPP. This framework used EC tower datasets at several wetland sites, with
datasets spanning multiple years across all seasons (and thus the full range of possible light and temperature controls) (Table 2).
Atmospheric fluxes of NEE at the sites were determined using the eddy covariance technique (Baldocchi et al., 1988). The calculated
fluxes were either downloaded directly from Ameriflux or provided by site principal investigators. With the exception of US-NC4, all
sites experienced tidal hydrology (the hydrology of US-NC4 is classified as “seasonally flooded” in the National Wetlands Inventory).

Third, using the results from the Bayesian framework as the BC model inputs, the BC model then calculated equation (1). The iPAR
inputs were derived from meteorological datasets: NCEP Climate Forecast System Version 2 6-hourly products (CFSV2) (Saha et al.,
2011), and downward solar radiation flux at 6-hour intervals (imagery layer name in Google Earth Engine: Downward_Short-
Wave_Radiation_Flux_surface_6_Hour_Average) (Gorelick et al., 2017). The fPAR inputs were derived from MODIS EVI datasets
(MOD13Q1; Didan 2015) at 16-day time intervals and at 250-m spatial resolution across the continental United States.

Fourth, a unique spatial algorithm was developed to solve the problem of “mixed pixels”.

Fifth, the validity of the BC model was assessed by comparing its GPP predictions with field-derived EC tower GPP. The BC model
output GPP predictions were compared with field-derived GPP from the 10 EC tower sites (Table 2). For four of the tower locations,
some years were used during parameterization of the Bayesian model (designated P in Table 2), while other years were used for
validation (designated V and N). For the other six “offsite” locations, all data were used only at the validation stage (designated O). The
BC model performance was evaluated using linear regression and standard metrics for goodness-of-fit. After validation of the BC
model, GPP was mapped across tidal wetlands at 16-day intervals for the years 2000-2019. Daily average per m2 GPP and total annual
GPP were calculated within individual tidal wetland pixels. The predicted GPP by class was multiplied by the percent cover of each
class in the pixel for the woody and herbaceous classes separately, and then the two were summed to find the GPP in each pixel.

Sixth, tidal wetland GPP was mapped over the relevant spatiotemporal extent.
Finally, the BC model was compared with NASA's MOD17 GPP product (Feagin et al., 2020; Running et al., 2015).

Table 2. Summary of Flux Datasets Used During Parameterization and Validation of the Bayesian Framework and BC Model.

EC tower site ID, Name . Example . . BC Model g
(State) Location Reference Dominant Plant Species Class Dates

P 2007-

2008
US-SKR, Shark River 25.363293, | Barr et al. gg;f)f"ﬁg‘:f gzzalfl;lg‘r’i’;e””’a Woody \2/021%09'
Slough Everglades (Florida) | —81.077544 | (2013) ' (Mangroves)

racemosa

N 2004-

2006;

2011

P 2013-
US-NC4, Alligator River 35.787717, | Miao et al. Taxodium distichum, Nyssa YI\:Ir?eosdrxvater 2014
(North Carolina) —75.903952 | (2017) aquatica, Acer rubrum SWamp) V 2015-

2016

P 2013-

2014
US-PHM, Plum Island High | 42.742443, | Forbrich et Spartina patens, Spartina Herbaceous V 2015-
Marsh (Massachusetts) —70.830219 | al. (2018) alterniflora, Distichlis spicata (Salt Marsh) 2016

N 2017

P 2014-
US-SRR, Suisun Marsh- 38.200556, | Knox et al. Schoenoplectus spp., Typha ::er(;ks)?mi\'/a:tfr 2015
Rush Ranch (California) —122.02635 | (2018) spp., Lepidium latifolium L. Wetland) V 2016-

2017
US-PLM, Plum Island Low 42.734463, N/A Spartina alternifiora Herbaceous 0 2015-
Marsh (Massachusetts) —70.838231 p (Salt Marsh) 2017
US-HPY, Hawk Property 40.769173, ggk?;?:rand Spartina patens, Phragmites Herbaceous 0 2014-
(New Jersey) —74.085318 (2018) australis (Salt Marsh) 2017
US-ST], St. Jones Reserve 39.088225, | Capooci et Spartina alterniflora, Spartina Herbaceous 0 2016-
(Delaware) —75.437210 | al. (2019) cynosuroides (Salt Marsh) 2017




UoS-vrr, virginia Coast Res. | 5/7.411U0), N/A Spartina alterniflora neroaceous U ZUlO-

Following Point (Virginia) —75.833208 (Salt Marsh) 2017
(E;CE' Gte°r9'a|_$é’:5ta' 31.444094, | Taoetal. Soarting alternifl Herbaceous 02013-
cosystems —81.283444 | (2018) partina afternitiora (Salt Marsh) 2015
(Georgia)
. Herbaceous
US-LA1, Pointe-aux-Chenes | 29.501303, | Krauss et al. ,
Brackish Marsh (Louisiana) | —90.444897 | (2016) SRV [PERIS fl'\:/reif:r‘:g’;ter @z

@ Codes denote how each year of EC tower field-derived data were used for the final two class model (woody and herbaceous classes):
P = parameterization of Bayesian framework only; V = validation for Bayesian framework and BC model; N = validation for BC model
use only; O = “offsite” validation for BC model use only. Refer to Feagin et al., 2020 for details.

6. Data Access

These data are available through the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).
Gross Primary Production Maps of Tidal Wetlands across Conterminous USA, 2000-2019

Contact for Data Center Access Information:

e E-mail: uso@daac.ornl.gov
e Telephone: +1 (865) 241-3952
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