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Summary
This dataset provides monthly globally gridded freshwater wetland methane emissions from 2001-2018 in nmol CH4 m-2 s-1, g C-CH4 m-2 d-1, and
TgCH4 grid cell-1 month-1. The data were derived from a six-predictor random forest upscaling model (UpCH4) trained on 119 site-years of eddy
covariance CH4 flux data from 43 freshwater wetland sites covering bog (8), fen (8), marsh (10), swamp (6), and wet tundra (11) wetland classes and
distributed across Arctic-boreal (20), temperate (16), and (sub)tropical (7) climate zones. Weekly mean CH4 fluxes were computed from half-hourly
FLUXNET-CH4 Version 1.0 fluxes. Each grid cell CH4 flux prediction was weighted by fractional grid cell wetland extent to estimate CH4 emissions using
the primary global dataset of Wetland Area and Dynamics for Methane Modeling (WAD2M) product and an alternate Global Inundation Estimate from
Multiple Satellites GIEMS version 2 global wetland map. Both WAD2M and GIEMS-2 maps were modified with several correction data layers to represent
the monthly area covered by vegetated wetlands, excluding open water and coastal wetlands. The data products are: mean daily fluxes with no adjustment
for wetland area (i.e., flux densities assuming hypothetical 100% wetland cover); mean daily fluxes adjusting for WAD2M or GIEMS-2 wetland area; and
by-pixel monthly sum of freshwater wetland methane emissions adjusting for WAD2M or GIEMS-2 wetland area. The data are provided in NetCDF4
format.

There are seven data files in NetCDF4 format with this dataset.

Figure 1. Location, class, and size of 26 globally distributed freshwater wetland clusters. Symbol sizes reflect the number of weekly CH4 fluxes in each
cluster expressed as a percent of the total dataset considered in this study. Clusters combine data from sites that occur within 300 km of each other. At
least one site was available from each major climate zone (Arctic-boreal, temperate, and tropical) and all major wetland classes were represented.
Mean annual maximum wetland area fraction over 2000-2017 is shown from the Wetland Area Dynamics for Methane Modeling (WAD2M) product
(Zhang et al., 2021).
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1.  Dataset Overview

This dataset provides monthly globally gridded freshwater wetland methane emissions from 2001-2018 in nmol CH 4 m-2 s-1, g C-CH4 m-2 d-1, and

TgCH4 grid cell-1 month-1. Weekly mean CH 4 fluxes were computed from half-hourly FLUXNET-CH4 Version 1.0 fluxes. Each grid cell CH4 flux prediction

was weighted by fractional grid cell wetland extent to estimate CH4 emissions using the primary global dataset of Wetland Area and Dynamics for
Methane Modeling (WAD2M) product (Zhang et al., 2021) and an alternate Global Inundation Estimate from Multiple Satellites GIEMS version 2 (Prigent et
al., 2020) global wetland map. Both WAD2M and GIEMS-2 maps were modified with several correction data layers to represent the monthly area covered
by vegetated wetlands, excluding open water and coastal wetlands. The data products are: mean daily fluxes with no adjustment for wetland area (i.e., flux
densities assuming hypothetical 100% wetland cover); mean daily fluxes adjusting for WAD2M or GIEMS-2 wetland area; and by-pixel monthly sum of
freshwater wetland methane emissions adjusting for WAD2M or GIEMS-2 wetland area. The data are provided in NetCDF4 format.

The UpCH4 model was designed to predict CH 4 fluxes globally at inundated and non-inundated (i.e., shallow water table) freshwater vegetated wetlands.

Forty-five natural and restored freshwater wetland sites from the FLUXNET-CH4 database qualified for model training. The final eddy covariance tower
dataset consisted of 43 freshwater wetland sites covering bog (8), fen (8), marsh (10), swamp (6), and wet tundra (11) wetland classes and distributed
across Arctic-boreal (20), temperate (16), and (sub)tropical (7) climate zones.

Project: Carbon Monitoring System

The NASA Carbon Monitoring System (CMS) program is designed to make significant contributions in characterizing, quantifying, understanding, and
predicting the evolution of global carbon sources and sinks through improved monitoring of carbon stocks and fluxes. The System uses NASA satellite
observations and modeling/analysis capabilities to establish the accuracy, quantitative uncertainties, and utility of products for supporting national and
international policy, regulatory, and management activities. CMS data products are designed to inform near-term policy development and planning.
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2.  Data Characteristics
Spatial Coverage:  Global

Spatial Resolution: 0.25-degree

Temporal Coverage: 2001-01-01 to 2018-12-31

Temporal Resolution: Monthly

Study Areas: Latitude and longitude are given in decimal degrees.

Site Westernmost Longitude Easternmost Longitude Northernmost Latitude Southernmost Latitude

Global -180 180 85 -56

Data File Information

There are six data files in NetCDF4 format. The file names and variables are described in Table 1 and Table 2 below.

Table 1. File names and descriptions.

File name
Units of
methane
emissions

Description
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upch4_v04_m1_TgCH4month_Aw.nc
TgCH4 pixel-1

month-1
By-pixel monthly sum of freshwater wetland methane emissions using WAD2M
wetland area (Aw). 

upch4_v04_m1_TgCH4month_Aw_giems2.nc
TgCH4 pixel-1

month-1
By-pixel monthly sum of freshwater wetland methane emissions using GIEMS-2
wetland area (Aw)

upch4_v04_m1_gCm2day.nc g C m-2 d-1 Mean daily freshwater wetland methane fluxes (2001-2018) with no adjustment for
wetland area (i.e., flux densities assuming hypothetical 100% wetland cover)

upch4_v04_m1_mgCH4m2day_Aw.nc mg m-2 d-1 Mean daily freshwater wetland methane fluxes (2001-2018) using WAD2M wetland
area (Aw)

upch4_v04_m1_mgCH4m2day_Aw_giems2.nc mg m-2 d-1 Mean daily freshwater wetland methane fluxes (2001-2018) using GIEMS-2 wetland
area (Aw)

upch4_v04_m1_nmolm2sec.nc nmol m-2 s-1 Mean freshwater wetland methane fluxes (2001-2018) with no adjustment for
wetland area (i.e., flux densities assuming hypothetical 100% wetland cover)

Note: All products use a 0.25-degree global grid.

Table 2. Variables in all data files. Units for for *_ch4 variables are listed in Table 1.

Variable Description

time Time in months since 2001-01

longitude degrees_east

latitude degrees_north

mean_ch4 Mean methane emissions

sd_ch4 Standard deviation methane emissions

var_ch4 variance in methane emissions

3.  Application and Derivation
Wetlands are responsible for 20-31% of global methane (CH 4) emissions and account for a large source of uncertainty in the global CH 4 budget. Data-

driven upscaling of CH4 fluxes from eddy covariance measurements can provide new and independent bottom-up estimates of wetland CH 4 emissions.

4.  Quality Assessment
A random forest model ensemble was trained to propagate uncertainties in training data to a gridded product.

Model performance was evaluated by comparing predicted and observed CH 4 fluxes using the coefficient of determination (R 2), MAE normalized by flux

standard deviation (nMAE), and bias, computed as the mean of residuals. Nash-Sutcliffe Efficiency (NSE) was also computed as an integrative measure

of model performance. NSE is equal to R2 when model bias is zero, and a NSE > 0 corresponds to a model performance better than simply taking the
average of the data. Performance was evaluated with respect to three dataset components: site mean flux, mean seasonal cycle (MSC) calculated as the
average monthly anomaly from site mean, and interannual monthly anomalies from the MSC (Tramontana et al., 2016; Jung et al., 2020; Peltola et al.,
2019).

Refer to McNicol et al. (2023) for additional details.

5.  Data Acquisition, Materials, and Methods
Predictive Modeling

Data were derived with a six-predictor random forest upscaling model (UpCH4), trained on 119 site-years of eddy covariance CH 4 flux data from 43

freshwater wetland sites in the FLUXNET-CH4 Community Product. The final eddy covariance tower dataset consisted of 43 freshwater wetland sites
covering bog (8), fen (8), marsh (10), swamp (6), and wet tundra (11) wetland classes and distributed across Arctic-boreal (20), temperate (16), and
(sub)tropical (7) climate zones.

Weekly mean CH4 fluxes were computed from half-hourly FLUXNET-CH4 Version 1.0 fluxes, which are available as a standardized gap-filled product

(Delwiche et al., 2021). Weekly fluxes were only retained when there was a minimum of 1 day (48 half-hours or ~14%) of CH4 observations.

Sites within 300 km of each other were grouped together, resulting in 26 clusters that were used for spatial leave-one-out cross-validation (LOOCV) of the
machine learning model, where each training/validation fold consisted of all data except one hold-out cluster (Meyer et al., 2019).

A total of 140 candidate predictors were considered for data-driven upscaling. These candidate predictors were organized into five broad classes: climatic
(e.g., temperature, precipitation), biometeorological (i.e., flux tower-measured air temperature, and ecosystem carbon and energy fluxes), land cover class
and properties (e.g., vegetation class), soil physical and chemical properties (e.g., clay content), topography (e.g., slope), and vegetation indices (e.g.,
vegetation greenness). Each predictor class contains data from different sources (e.g., models, tower-observations, and/or remote sensing) and
information content (e.g., spatial only, temporal only, or spatio-temporal). Gridded data products were extracted at pixels corresponding to tower locations
and used directly in model development whereas tower-measured data, when available, were used preferentially in model training and then substituted by
a globally gridded product to force the model during upscaling runs (e.g., tower-measured air temperature was mapped to the MERRA-2 reanalysis air
temperature gridded product).

Lead and lag times of one, two, or three weeks or months (for weekly and monthly data, respectively) were imposed on all temporally-resolved predictors,
corresponding to multi-day and seasonal lead and lag timescales identified between wetland CH4 fluxes, and temperature, eddy covariance-derived gross



primary production (GPP), and soil moisture-related drivers (Delwiche et al., 2021; Knox et al., 2021). For MODIS data, monthly mean seasonal cycles
(MSC) and other annual metrics (e.g., site-year mean, minimum, maximum, amplitude) were also derived. A total of 273 predictors were available for
model training.

Forward feature selection (FFS) was used to identify the optimal predictor subset from across all possible predictors to use in the final model (Gregorutti
et al., 2017; Meyer et al., 2018). After FFS, random forest models were re-trained using the final predictor set, and their predictive performance was
evaluated using leave one (cluster) out cross validation (cross validation, hereafter) (Meyer et al., 2018).

Upscaling Global CH4 Flux-Final Model Ensemble

A final random forest model ensemble was trained to propagate uncertainties in training data to a gridded product.

The 500-member final model ensemble was applied to an 18-year (216-month) time series of global grids of final predictor variables covering 2001-2018
from which the mean and standard deviation of predictions at each pixel globally was used as mean CH4 flux and data-driven uncertainty. The

reconstruction period (2001-2018) aligns with the current Global Carbon Project CH4 modeling protocol and the monthly timestep of the WAD2M wetland

extent product (Saunois et al., 2020; Zhang et al., 2021), though weekly data were used to train the machine learning model. For MODIS data, Google
Earth Engine (Gorelick et al., 2017) was first used to prepare global monthly grids at 10-km resolution, excluding low quality observations, aggregating
from 8-day values to monthly averages using the average of all good 8-day observations within a month, and aggregating from 500-m resolution to 10-km
resolution using the average of all good quality 500-m or 1000-m observations within the 10-km pixel. Gaps of time-series of MODIS images were filled
using the same methods as for site-based MODIS time series. All global grids were then resampled to a common 0.25° resolution and cropped to exclude
Antarctica. Data were reprojected to WGS-84 geographic coordinates. Monthly positive and negative lags were imposed on grid stacks by shifting the
stack by whole-month time steps, and linear interpolation between these shifts was used to create weekly time shifts. For each temporal predictor, a mean
seasonal cycle stack was created by averaging rasters for each month across all available years for use in the global dissimilarity and tower constituency
analyses.

 Wetland Area Products

Each grid cell CH 4 flux prediction was weighted by fractional grid cell wetland extent to estimate CH 4 emissions using the primary WAD2M (Zhang et al.,

2021) product and an alternate Global Inundation Estimate from Multiple Satellites GIEMS version 2 (Prigent et al., 2020) global wetland map. Both
WAD2M and GIEMS-2 maps were modified with several correction data layers to represent the monthly area covered by vegetated wetlands, excluding
open water and coastal wetlands. The maps were generated based on distinct multi-sensor methodologies estimating monthly inundated wetland area, to
which a set of tailored correction layers and steps were applied to isolate only vegetated wetland area, following the methodology of Zhang et al. (2021).

Global Applicability and Tower Constituency

Upscaled model predictions were extrapolated across a much larger spatial (Stell et al., 2021) and temporal (Chu et al., 2017) domain than that captured
in the training data. To measure extrapolation during CH4 upscaling, computed point-based dissimilarity was computed (Hoffman et al., 2013) globally,

defined as the minimum Euclidean distance between each grid cell-to-flux tower pair in predictor space, normalized by the mean distance among flux
towers (Meyer et al., 2018, 2019). The dissimilarity map was then used to define a monthly, global area of model applicability (AOA) and corresponding
area of extrapolation, using a dissimilarity threshold (Meyer and Pebesma, 2022). Finally, the global constituency of each site cluster was defined to
identify which training conditions dominate global predictions and further evaluate the plausibility of global extrapolations.

See McNicol et al. (2023) for additional details.

6.  Data Access
These data are available through the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

Global Wetland Methane Emissions derived from FLUXNET and the UpCH4 Model, 2001-2018

Contact for Data Center Access Information:

E-mail: uso@daac.ornl.gov
Telephone: +1 (865) 241-3952
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