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Synopsis

The overall goal of BigFoot is to provide validation of MODLand (MODIS Land Science Team) science products, including land 
cover, leaf area index (LAI), fraction absorbed photosynthetic active radiation (fAPAR) , and net primary production (NPP). To do so, 
we use ground measurements, remote sensing data, and ecosystem process models at sites representing different biomes. BigFoot 
sites are 5 x 5 km in size and surround the relatively small footprint ( 1 km2) of CO2 flux towers. At each site we make multi-year 
in situ measurements of ecosystem structure and functional characteristics that are related to the terrestrial carbon cycle. Our 
sampling design allows us to explicitly examine scales of fine-grained spatial pattern in these properties, and provides for a field-
based ecological characterization of the flux tower footprint. Multi-year measurements ensure that inter-annual validity of 
MODLand products can be assessed. 

For each measurement year we derive land cover, fAPAR, and LAI surfaces by linking our in situ measurements to Landsat ETM+ 
data. These BigFoot surfaces are developed using logic that preserves functionally important fine-grained information. Errors in 
these surfaces are quantified and the surfaces summarized to provide a characterization of vegetation patterns in the greater flux 
tower footprint. Using these land cover and LAI surfaces and derived climate surfaces, we model NPP over the 5 x 5 km BigFoot 
footprint. Two independent ecosystem process models are used: Biome-BGC and IBIS. The ability of the models to capture 



environmental and ecological controls on water and carbon cycles is assessed with the following comparisons: modeled NPP 
against in situ measurements of NPP, modeled GPP to tower-based calculations of GPP, and modeled daily water vapor and CO2 
fluxes to tower estimates. We validate MODLand land cover, LAI, fAPAR, and NPP surfaces by comparing them to BigFoot surfaces 
derived using field measurement data. A series of exercises that isolate important scaling factors is conducted, so that their effects 
on NPP model estimates can be better understood. This involves rerunning the models after converting site-specific land cover 
classes into broad, globally applicable classes, successive coarsening of land cover and LAI surface grain size, and generalizing the 
light use efficiency factor ( ) to coincide with the more generalized land cover classes. 

There are nine BigFoot study sites that span eight major biomes, from desert to tundra, to tropical forest. At these sites, in addition 
to validation of MODIS products, we quantify carbon content and NPP, examine how these variables vary spatially and temporally, 
and how NPP is related to climatic variables. Collectively, the standardized NPP data from the contrasting biomes elucidates 
biophysical controls on NPP, and their sensitivitiy to changing climate and land use. Our standardized data also allow for direct 
testing of whether light use efficiency (LUE) differs among plant functional types, or seasonally for a given type. 

A global terrestrial observation system is needed to assist in the validation of global products such as land cover and NPP from 
MODIS and other sensor and modeling programs. A key component of such a system is the eddy flux tower network, FLUXNET; 
however, flux sensors measure net ecosystem productivity (NEP), not NPP. BigFoot is learning how NEP and NPP are related, and 
through modeling, how to integrate a wide range of carbon cycle observations. Another key component of an observing system is 
the use of remote sensing and models to scale tower fluxes and field measurements. Although this may be relatively common at a 
given site, no other project is doing so with standardized methods across so many biomes. As such, BigFoot is a pathfinding activity 
that will contribute to the development of useful scaling principles. The project can also serve as a nucleus for the global terrestrial 
observing system that is needed to validate global, generalized products used to monitor the health of the terrestrial biosphere. 

  

  

Introduction

Accurate assessments of regional- and global-scale changes in the terrestrial biosphere are essential if human impacts on biosphere-
atmosphere function are to be understood. There are a myriad of ecosystem attributes to be monitored, but quantifying human 
impacts necessarily includes an evaluation of vegetation cover and net primary productivity (NPP), as these determine amounts of 
fuel, fiber, and food for human consumption (Running et al. 1999). A global terrestrial observing system is needed that integrates 
field-based measurements, flux towers, remote sensing, and ecosystem modeling (Baldocchi et al. 1996, Running et al. 1999, 
Canadell et al. 1999). 

Ecosystem process models that simulate carbon, water, and energy exchange between terrestrial ecosystems and the atmosphere 
require leaf area index (LAI) and vegetation cover as primary drivers (Landsberg and Gower 1997, Waring and Running 1998), and 
these must be derived by remote sensing. MODIS (Moderate Resolution Imaging Spectrometer) is the primary high temporal 
frequency mapping sensor onboard NASA's Earth Observing System (EOS) satellite Terra, launched in December 1999. MODIS is 
poised to become the most important global mapping sensor ever, as it views the entire Earth's surface every 1-2 days acquiring data 
in 36 spectral bands at spatial resolutions of 250 to 1000m. 

Validation of the global data products derived from MODIS and related sensors is essential to both assess product accuracy and to 
provide feedback to algorithm developers so the algorithms can be improved. Faced with the challenge of validating global 
remotely sensed products, NASA formed the EOS Validation Program to assist MODIS (and other) Science and Instrument Teams 
with product validation. For the Land Science Team (MODLand), research at intensive study sites forms the backbone of the 
validation plan. These have evolved into what constitutes the MODLand core validation sites network. The sites associated with our 
current project, BigFoot, are important sites within that network. Each BigFoot site is centered on an eddy flux tower that measures 
continuous water, energy, and carbon fluxes that can potentially be used to validate MODIS products. However, with their relatively 
small footprint on the order of  1 km2, nearly equivalent to a single MODIS resolution cell (that in most cases will not perfectly 
align with the footprint), it is important that the spatial context of flux towers be known. 

http://modis-land.gsfc.nasa.gov/val/coresite_gen.asp


BigFoot is designed to provide that context using a combination of 
in situ ecological data, Landsat ETM+ data, and ecosystem models 
(Cohen and Justice 1999). Moreover, BigFoot maps land cover, 
LAI, fraction absorbed photosynthetic active radiation (fAPAR), and 
NPP over a 5 x 5 km area around an eddy flux tower at ETM+ 
resolution. This means we fully characterizes 25 MODIS cells 
around a given tower site, and are able to test a number of scaling 
factors that should reveal possible causes of MODIS mapping errors 
(thereby providing feedback to algorithm developers). Finally, 
BigFoot takes important steps to enhance the goals of GTOS (the 
Global Terrestrial Observing System. 

  

 

 

 

 

  

Objectives

Make multi-year in situ measurements of carbon-related ecosystem properties at BigFoot sites. Our sampling design will 
enable scales of fine-grained spatial pattern in these properties to be explicitly examined, and provide for a field-based ecological 
characterization of the flux tower footprint. Multi-year measurements will ensure that the temporal validity of MODLand products 
can be accurately assessed. 

Develop multi-year site-specific land cover, LAI, and fAPAR surfaces by linking in situ measurements and observations to 
Landsat ETM+ data. Errors in these surfaces will be quantified and the surfaces summarized to provide a map-based 
characterization of the greater flux towers footprint. 

Model NPP over the 5 x 5 km BigFoot footprint at each site in multiple years using land cover and LAI surfaces derived from 
Obj. 2 and derived climate surfaces. Two independent ecosystem process models will be used and their performance assessed by 
comparisons of modeled NPP against in situ measurements of NPP from Obj 1. Modeled GPP and water vapor will compared to 
tower-based calculations of these variables.

Validate MODLand land cover, LAI, fAPAR, and NPP surfaces and examine the contribution of several scaling factors to 
differences between MODLand and BigFoot surfaces. Validation will involve direct comparisons of MODLand surfaces to BigFoot 
field data and derived surfaces. Scaling factors examined will include land cover class, grain size, and generalization of light use 
efficiency factors ( ) to coincide with the generalized land cover labels. Effects of these scaling factors on LUE and model-based 
NPP estimates will be determned by developing new NPP surfaces, using as inputs, the scaling factors at each degree and type of 
generalization. We will also determine the temporal sensitivity of the MODLand NPP product using multi-year field measurements, 
tower measurements, and BigFoot NPP surfaces. 

http://www.fao.org/GTOS/


Faciltate achievement of the GTOS goal to develop a network of sites that will serve as long-term global NPP monitoring 
sites. We want BigFoot activities to both serve as a nucleus for this network and to help define a practical scaling logic relevant to 
these sites that incorporates field measurements, remote sensing, and ecological modeling. 

  

 

  

Background and Context

The origins of BigFoot are traceable to 1992 when S. Running of MODLand contacted the Long-Term Ecological Research (LTER) 
community to assist with validation of anticipated MODIS products. The first proposal, funded by NASA's Terrestrial Ecology 
Program (TEP) in 1994, involved prototype scaling exercises using existing data at 14 (mostly LTER) sites. In 1996, the 20+ person 
team held an LTER-funded workshop to share results and stratagies for future direction. Workshop proceedings were published in a 
special issue of Remote Sensing of Environment in October 1999, edited by Cohen and Justice. In 1998, the largely amorphous 
project was rescoped, and with renewed TEP support became what we now call BigFoot. What defines the project is its focus on 
using remote sensing and ecosystem process models to scale ecological field measurements within a greater eddy flux tower 
footprint. Doing this across a range of biomes using standardized measurements and an innovative sampling design affords us a 
unique opportunity to examine ecosystem function at the local level in a global context. 

Originally, BigFoot included four sites, with the first field season being in 1999 at two of these sites (see group 1 in field activity 
schedule below). Each site represents a distinct and globally important biome. The NOBS site (or Northern Old Black Spuce site 
from BOREAS) is a boreal needleleaf evergreen forest. HARV, (the Harvard Forest LTER site) is a temperate mixed forest. The 
agricultural cropland site, AGRO (a.k.a. Bondville) is primarily corn and soybeans. KONZ (the Konza Prairie LTER site) is a 
tallgrass prairie. The project focused on validation of MODIS land cover, LAI, and NPP products. 



The overall goal of BigFoot is to continue with MODIS land cover, LAI, and NPP product validation at the four existing sites, but 
now we have expanded our focus to include validation of fAPAR and our biome coverage to include five new sites for a more globally 
comprehensive assessment of MODIS product validity (see field activity schedule above). The new sites include a desert grassland 
(SEVI, the Sevilleta LTER), an tundra near the Arctic coastal plain (TUND, near Barrow, AK), and a tropical broadleaf evergreen 
forest in the Amazon Basin (TAPA, the Tapajos Primary Forest site of LBA). In addition, we offer two sites at no additional cost to 
NASA (Group 3); these sites include a second temperate mixed forest (CHEQ, Chequamegon National Forest in Wisconsin), and a 
temperate needleleaf evergreen forest near Metolius, Oregon (METL). The Group 3 sites are fully funded by either the NASA EOS 
Validation Program (CHEQ to Gower) or the Environmental Protection Agency (METL to B. Law, Turner, Cohen et al.). 
Continued work at NOBS beyond 2000 is funded by the National Science Foundation to Gower. Another important goal of BigFoot 
is to explicitly assess if MODLand products can detect the effects of inter-annual variation in climate on vegetation cover, LAI, 
fAPAR, and NPP. Also, we examine how LUE varies within and among sites and vegetation types and propose to actively facilitate 
further formation and definition of GTOS in support of MODIS validation. 

In addition to BigFoot, there are several other initiatives addressing the development of a global terrestrial monitoring and 
validation program. These include the Global Primary Production Data Initiative (GPPDI), the worldwide CO2 flux network 
(FLUXNET), the MODLand Science Team and associated validation program, the Vegetation/Ecosystem Modeling and Analysis 
Project (VEMAP), and the Global Analysis, Integration, and Modeling (GAIM) NPP model intercomparison activity. These all 
recognize the need to consider several key elements in the formation of a global terrestrial monitoring system, including: in situ 
vegetation measurements, eddy flux tower measurements, vegetation surfaces derived from remote sensing, and biogeochemical 
process models, all used over time. However, these programs exist either as stand alone efforts (e.g., FLUXNET, MODIS-NPP 
modeling) or incorporate only one or two of the key elements of a comprehensive observation and validation program (e.g., GPPDI, 
VEMAP). In contrast, BigFoot integrates all of the aforementioned key elements at a spatial scale that serves as a rigorous 
validation of global sensor and terrestrial modeling products (as shown in the figure below). 



 

Specifically, BigFoot:

●     Uses field measurements and Landsat ETM+ data to parameterize eocsystem process models at a local scale (i.e., within the 
5 x 5 km BigFoot footprint) so that we can understand the environmental and ecological controls on carbon exchange 
between terrestrial ecosystems and the atmosphere at that scale.

●     Assesses how accurately process models capture the environmental controls on CO2 and H2O exchange between terrestrial 
ecosystems and the atmosphere.

●     Statistically compares the land cover, LAI, fAPAR, and NPP surfaces we generate against field measurements to help establish 
the accuracy of those surfaces, so that they can be legitimately compared gainst co-located sections of globally-derived, 
generalized surfaces (such as those of MODLand). 

●     Compares BigFoot modeled GPP (gross primary production) against calculations of GPP from flux tower data–a strong first 
step towards effective integration of process models and flux measurements.

●     Provides both field-based and map-based characterizations of flux tower footprints.

  

 

 



  

Site Selection Logic

As the cost for a full BigFoot characterization of a given site is not trivial, careful selection of sites is an imperative. The BigFoot 
concept requires continuous eddy flux measurements of H2O and CO2 exchange between terrestrial ecosystems and the atmosphere. 
Although the number of flux towers is growing, there are still only around 100 globally (Running et al. 1999). Biomes that cover a 
larger fraction of the land surface, or that are expected to experience the greatest change because of warming or land use patterns, 
were considered high priority sites. In addition, we selected biomes that cover a broad range in LAI and NPP to provide a robust 
data base for the validation of MODLand products and the examination of climatic influences on NPP. 

Our boreal forest site (NOBS) represents the biosphere's second largest biome. Boreal forests have low NPP, and are interesting 
from the point of view that the large amount of soil carbon they contain is believed to be susceptible to release if warming occurs 
(Goulden et al. 1998). Our agricultural cropland site (AGRO) has high NPP, and both it and our tallgrass prairie site (KONZ) are 
subject to intensive land use change and management practices (e.g., cropping, burning and grazing). The BigFoot temperate mixed 
forest site (HARV) represents a large, historically highly disturbed biome that is purported to be a current carbon sink (Goulden et 
al. 1998). The desert grassland (SEVI) serves as a low anchor for LAI and NPP. The arctic tundra site (TUND) also has relatively 
low LAI and NPP, but it is an expected carbon source with warming. The tropical broadleaf evergreen forest in the Amazon 
(TAPA) has high LAI and NPP and represents the largest terrestrial biome. This biome is experiencing rapid deforestation and 
changes in land use. The second temperate mixed forest site (CHEQ) serves as a replicate to determine if there is variability among 
widely dispersed sites within the same general biome. The temperate needleleaf site (METL) is representative of xeric continental 
conifer forest. The five newest sites all have substantial ongoing measurement and modeling activities that complement our original 
efforts. 

At AGRO, we are extending our field sampling for an additional year (see field activity schedule) so that we can assess MODLand 
product temporal valididty at this site (recall there were no MODIS data in 1999). BigFoot originally made measurements in both 
2000 and 2001 at KONZ and HARV, and is continuing sampling at HARV in 2002 and in 2003. The continued work (with a less 
intensive field effort) at NOBS is funded by NSF. We continue working at HARV and NOBS throughout BigFoot because these 
two sites have long-term flux observations and are in biomes that are important to monitor under conditions of land use and global 
change (i.e., HARV is a purported carbon sink due to a recovery phase following widespread disturbances that took place over 100 
years ago and NOBS has large carbon stores and is sensitive to climate change). Field measurements accompanying the flux data at 
these sites provide continued mutual corroborative support and help us understand the ecological changes that accompany the 
interactions of land use, climate, and carbon cycle changes. No additional field measurements are made at AGRO or KONZ beyond 
2001, but using the developed remote sensing and modeling algorithms from the earlier years, we continue to monitor these sites. 
Sampling at the CHEQ site is 100% consistent with the BigFoot design, but at METL there will be less dense sampling than at other 
sites. However, the data collected and the collection protocols at METL are consistent with BigFoot.

  

 

 

 

http://www.fsl.orst.edu/larse/bigfoot/images/table1.gif


  

Sampling Design and Implementation

The BigFoot sample design calls for 100 ground validation measurements of land cover, LAI, fAPAR, and NPP at each site (see 
Figure 2, below). Plot size is 25 x 25 m, chosen to roughly correspond to the pixel size of ETM+ data and neatly nesting at various 
increments up to 1 km. Between 60 and 80 plots will be concentrated within a 1 km cell centered on the site's eddy flux tower, with 
the balance of the 100 plots located outside the tower cell, but within the 5 x 5 km BigFoot footprint. This density of plots within 
the tower footprint ensures adequate characterization of the vegetation properties within that footprint, a critical accomplishment if 
flux data are to be properly interpreted and used to assess scaled carbon and water flux estimates from biogeochemical models. The 
20-40 plots outside of the tower footprint (i.e., within the 24 external cells) are apportioned within basic land cover strata to enable 
independent validation of BigFoot surface products over the full BigFoot footprint.

To facilitate a geospatial understanding of the ecology of the tower footprint, the plot design is a nested spatial series (see sampling 
design diagram above). This permits explicit examination of spatial covariation among field-measured ecosystem properties using 



variograms and cross-variograms (Cressie 1993). Further, the nested cyclical design provides a distribution of plots that is efficient 
at maximizing the number of plots at each lag (i.e., separation distance) in increments of 25 m up to nearly 1 km, an important 
consideration if the data are to be used for geostatistical analyses (Figure 4a-b). This also facilitates an examination of the effects of 
observation grain size on MODIS NPP estimates, an essential element of the BigFoot validation protocol. In high spatial frequency 
(e.g., heterogeneous) landscapes, functionally-important, but small vegetation patches cannot be detected above a certain grain size 
of observation. The use of geostatistical techniques will play an important role in increasing our understanding of the effect of 
image pixel resolution on coupled remote sensing–modeling characterizations within a biome (Milne and Cohen 1999). Moreover, 
we can assess if there is a fundamental grain size above which functionally-important vegetation patches can not be resolved and 
modeling errors accelerate, and, how the fundamental grain size varies among biomes.

  

 

 

  

Methodology

●     Objective 1: In situ measurements of land cover, LAI, fAPAR, and NPP 

●     Objective 2: Development of land cover and LAI surfaces 

●     Objective 3: Modeling NPP over the 5 x 5 km BigFoot footprint 

●     Objective 4: Validation of MODLand land cover, LAI, fAPAR, and NPP products 

●     Objective 5: Facilitating the continued development of GTOS

Objective 1: In situ measurements of land cover, LAI, fAPAR, and NPP.

The plots have already been established at the orignal four BigFoot sites. For newer sites, we have established the plots using two 
Ashtech GG-24 Surveyor units. Plots are surveyed to within 50 cm horizontal root mean square error and plot centers are marked 
with a stake. Vegetation cover, LAI, fAPAR, and NPP is measured at several subplots within each plot for at least two years (see 
sampling design diagram and field activity schedule). LAI is measured using standard direct and optical methods at each site 
(Gower et al. 1999). Direct measurement approaches include periodic area harvest for non-forest sites and application of allometric 
equations to tree diameter data for forest sites. LAI and fAPAR are also estimated indirectly using the Li-Cor LAI-2000 Plant Canopy 
Analyzers (Fassnacht et al. 1994, Chen et al. 1997, Gower et al. 1997, Gower et al. 1999). Therefore, the number of LAI/ fAPAR 
measurement campaigns must vary among sites, as phenology of LAI development varies among biomes, among ecosystems within 
each biome, and between years for a given ecosystem. Consequently, we measure LAI and fAPAR three times each year at the forest 
sites and four to six times at other sites. 

fAPAR is estimated two ways: from the DIFFN variable provided by the Li-Cor LAI-2000 Plant Canopy Analyzer (Gower et al. 1999) 
and from a continuous PAR tram system. We designed and successfully deployed a PAR tram at NOBS in 2000. The PAR tram 
measures incident and reflected PAR both above and below the canopy at small increments along a 30 m track. We will be 
installing a tram at AGRO, SEVI, TAPA, HARV, NOBS, and METL in 2002 for several reasons. First, the fraction of direct to 
diffuse PAR influences LUE (Gower et al. 1999) and this relationship varies with canopy structure. Furthermore, the continuous 
measurements provide more complete characterization of daily and seasonal patterns of fAPAR. 

NPP (the sum of the annual biomass production of each tissue for all vegetation strata) is measured for a minimum of two years (see 
field activity schedule) at approximately 50 plots at all five newer sites. NPP is defined as equal to NPPW + NPPF + NPPCR + 
NPPFR + NPPU + NPPGC, where W = aboveground wood (e.g., stem + branches), F = foliage, CR = coarse roots, FR = fine roots, 

 



U = understory, and GC = ground cover (e.g., mosses and sphagnum). This equation is appropriate for any terrestrial ecosystem, but 
the field methods used to estimate each component vary among ecosystems (Gower et al. 1999). Aboveground woody biomass (e.
g., stem and branch) and coarse root biomass is also estimated from allometric equations that correlate component biomass to stem 
diameter at breast height (1.3 m). Woody biomass increment is determined from radial growth, measured using increment cores. As 
tropical trees do not produce reliable annual growth rings, we are using rust-resistant dendrometer bands (Walker and Whiteaker 
1988) to measure annual diameter growth. The number of tree species and size classes will be determined during the 2001 
reconnaiance trip. Numerous abiotic and biotic factors have been shown to influence the allometric coefficients for new foliage 
biomass; therefore we are estimating new foliage production from annual leaf litterfall detritus production for forests where site- 
and species-specific allometric equations are not available (Gower et al. 1999). This approach assumes the canopy biomass is in 
steady state. Total foliage biomass and leaf area equations are from the literature. Where appropriate, biomass and leaf area data for 
harvested trees of the same species, but different sites, are composited and a generalized regression equation is used. NPPA of the 
shrub and herbaceous layers is quantified using clip plots. We also use clip plots throughout the growing season to quantify biomass 
production at the non-forest sites. NPPA of bryophytes, lichens, etc. are estimated using crank wires and ingrowth mesh plots 
(Gower et al. 1997, Bisbee et al. 2000). Fine root net primary production and mortality is estimated using minirhizotrons (Steele et 
al. 1997). Measurements on NPPB are restricted to the two dominant vegetation types within a site because of the large costs 
associated with obtaining and processing these data. Minirhizotrons are installed in each ecosystem and fine root growth is 
measured for two years. In the forest ecosystems, coarse root NPP is estimated from allometric equations. 

Gower has experience in measuring components of the carbon budgets in grasslands and agriculture crops (Brye et al. 2000), 
tropical forests (Gower 1987, Gower and Vitousek 1989) and are adapting relative methodology to the new ecosystems.

 

Objective 2: Development of land cover and LAI surfaces.

To develop land cover, LAI, and fAPAR surfaces at any given site we are applying both general and specific sets of methods. Landsat 
ETM+ serves as the backbone of our remote sensing analyses. Each ETM+ image is radiometrically normalized and georeferenced. 
A 7 x 7 km area is extracted, linear statistical transformations and mapping decisions are developed and applied, and an error 
characterization performed. Multiple dates of Level 1G imagery from a given year are used and radiometric normalization 
commence by applying to each image the COST atmospheric correction algorithm of Chavez (1996), which converts digital counts 
to reflectance. The COST model is based on a simple but effective use of the dark object subtraction technique that accounts for 
both additive scattering and multiplicative transmmitance effects. COST uses the cosine of the solar zenith angle to approximate 
atmospheric transmittance and has been shown to be as accurate as models that use in situ (i.e., surface-based) atmospheric 
measurements and more rigorous radiative transfer code (Chavez 1996). For single-year, multi-image normalization at a given site, 
the image closest in date to maximum LAI is chosen as a reference and all other dates relatively normalized to it using a technique 
that locates the “ridge” of the two dimensional histogram formed by plotting a given ETM+ band from a subject date against that 
same band from the reference date. This method (conceived by R. Kennedy and W. Cohen) has been used quite effectively by Song 
et al. (in press). The ridge is located statistically (with the assistance of visual image inspection) and defines those pixels that have 
not undergone surface change. This results in a more robust relative normalization control set than is commonly obtained by 
selecting just a handful of pixels from the bright and dark ends of the brightness range of a given image (e.g., Hall et al. 1991). The 
ridge for each band of a given image pair (subject and reference) is subject to a regression analysis to calculate the normalization 
coefficients, which are then applied to the subject image to complete the normalization. This is done for each subject image from a 
given year for a given site. 

Georeferencing is accomplished using the best source of reference data available. For the seven sites in the USA, the positional 
accuracy of the Level 1G-processed image is assessed by direct comparison with USGS digital orthophoto quadrangles (DOQs) in a 
9 x 9 km area centered on the site. We found that for our original BigFoot sites, which are relatively small and free of significant 
topography, a small (<200 m) systematic shift in the x and y directions has been sufficient to provide a high-quality georeferencing 
of ETM+ to DOQs. After shifting the image into position, it is resampled to 25 m using the cubic convolution algorithm, and then 
clipped to a 7 x 7 km area centered on the site. The 7 x 7 km area provides a buffer that allows for subsequent alignment with a 5 x 
5 km area of MODIS products. For the non-USA sites the same process is used, but IKONOS 1 m images that have been 
georeferenced with GPS are used instead of DOQs. This has worked well for NOBS and we expect similar results using the image 
being purchased via the Science Data Purchase Program for TAPA. Georeferencing in this way is done for the reference radiometric 
normalization image, and all images from other dates within the same year are shifted to match the reference image. 



We continue mapping at all original four BigFoot sites in addition the five 
newer BigFoot sites. Land cover mapping relies on a combination of 
unsupervised classification, regression analysis, mixture modeling, and other 
techniques applied to the multi-date image set within a given year. 
Unsupervised classification is used to first stratify the scene into a single 
vegetation and several non-vegetation classes (e.g., water, barren, urban/built), 
but the process after that point is specific to the site. For example, at AGRO, 
we use a supervised classification to separate corn and soybean, which tend to 
be spectrally distinct, especially when seasonal development is captured via 
multi-date imagery. For forested sites, we also use an unsupervised 
classification to separate a forest class from non-forest classes. Then within the 
forested class, regression analysis is used to model percent tree cover and, if 
relevant, percent conifer versus hardwood. At HARV, because we use leaf-off 
and leaf-on imagery, we are able to identify conifer in the understory. The new 
sites each present a unique challenge, and our methods are tailored to the 
specific data sets available and information required for ecological modeling. 
Our work in the area of forest characterization under high LAI and biomass 
conditions, such as at TAPA, and in agricultural systems is current and 
extensive (e.g., Cohen et al. 1990, Cohen et al. in press, Lefsky et al. in press, Oetter et al. in press). For sites where low temporal 
frequency change is the norm, such as at the forested sites, subsequent years of land cover mapping rely on change detection. First, 
we determine if changes have occurred, then we label those areas that changed but carry the original label forward for those areas 
that have not changed. We used this procedure effectively in the Greater Yellowstone Ecosystem, which is a mix of forest, range, 
agriculture, and urban land use. 

To map LAI and fAPAR, our primary concern is characterizing the seasonal 
maximum, which we do using regression analysis. Again, here we take 
advantage of seasonal development of spectral properties in relationship to 
maximum LAI. For this we rely on canonical correlation analysis (CCA, Seal 
1964), which is an optimal alignment of the seasonal spectral data with an axis 
of LAI/fAPAR from low to high. An additional advantage of CCA is that it 
accomodates linear calibration, a technique that minimizes (the often 
significant) bias in regression model predictions when the true response 
variable (i.e., spectral data) is used as the independent variable in the model 
(Curran and Hay 1986, Snedecor and Cochran 1989). Unlike regression 
analysis, there can only be one independent variable in linear calibration. A 
vegetation index such as NDVI from a single date could be used, but the first 
CCA axis is superior as it weights all bands from all dates according to their 
contributions in predicting maximum LAI/fAPAR. We have used this method 
effectively at BigFoot sites and in other, independent in-progress studies. The 
combination of CCA and linear calibration is also used in the land cover 
mapping for BigFoot whenever we rely on regression modeling to provide 

unbiased continuous estimates of vegetation properties (e.g., percent forest cover). 

Characterization of errors in our land cover, LAI, and fAPAR surfaces is critical if they are to serve as validation for MODIS. To this 
end, we use our reference data (field data and other ancillary information such as aerial photos) in combination with a method called 
cross-validation, which is similar to bootstrapping and jackknifing (Efron and Gong 1983). We have the option of collecting more 
reference data and will do so where feasible, but reference data are expensive to collect and process. Having data from 100 plots, we 
could set some proportion aside explicitly for accuracy assessment, but as the primary consideration is the development of maps of 
the highest possible quality, we choose to use all data to develop the maps. Cross-validation is a statistical solution to this problem 
(Neter et al. 1999), in that 100 separate models are developed, each time with data from 99 plots. Each model is tested on the plot 
that was left out, providing a nearly unbiased estimator of prediction error (Efron and Gong 1983).

Objective 3: Modeling NPP over the 5 x 5 km BigFoot footprint.



A description of the BigFoot scaling approach for NPP and 
its rationale are found in Reich et al. (1999). Briefly, we 
use ecosystem process models as our principal scaling tool. 
Inputs include the land cover and LAI surfaces previously 
described, soil data if available, and climatic variables. 
Model parameterization is cover-type specific (e.g. White 
et al. 2000). To derive an NPP surface for a given year, the 
model is run in each of 1600, 25 x 25 m grid cells with 
daily or annual outputs, which are temporally aggregated 
and the surfaces saved as needed. The daily climate drivers 
are derived from half-hourly observations at the flux 
towers and extrapolated to each cell if needed to account 
for the effects of elevation, slope and aspect (e.g., at 
KONZ, steep south facing slopes receive over 20% more 
solar radiation than the north facing slopes). Daily GPPs, 
at either the flux tower or spatially aggregated in the 
vicinity of the tower, are compared against flux tower-
based GPPs. The NPP products for specific grid cells are 
compared with our field-measured NPP values. 

In BigFoot, we use two different ecosystem models to 
compare water and carbon fluxes from the flux tower, and 
to estimate NPP for the 5 x 5 km MODLand footprint. The 
two models are Biome-BGC (Running and Hunt 1993) and 
IBIS (Foley et al. 1996, Kucharik et al. 2000). We selected 
Biome-BGC because it was developed specifically for 
application in a spatially-distributed mode in combination 
with satellite data (e.g., Hunt et al. 1996). Biome-BGC was 
also used in the development of the light use efficiency 
factors for the MODIS GPP algorithm, hence it is helpful 
in interpreting differences between the MODLand products 
and the BigFoot products. In addition to providing an independent assessment of NPP, IBIS was selected for several reasons. First, 
IBIS is an integrated ecosystem model that simulates carbon and water fluxes for terrestrial ecosystems and the output has been 
validated for a variety of ecosystems (Kucharik et al. 2000). The model employs multiple time steps, including an hourly time step, 
which allows for tighter comparisons to hourly flux estimates from the towers. For Biome-BGC comparisons, tower GPP estimates 
are aggregated to the daily time step. IBIS also does a complete carbon budget, so that outputs are checked directly against tower 
NEE. Soil respiration measurements are being made at several of our sites which provide additional information of heterotrophic 
respiration. Gower is already using IBIS at NOBS and CHEQ. Jon Foley, the author of IBIS, is a BigFoot collaborator, and he is 
using IBIS to simulate carbon and water exchange within LBA. In BigFoot we originally used PnET (Reich et al. 1999) in addition 
to Biome-BGC, but we have decided not to continue use of this model because it is too similar to Biome-BGC. 

For 2002 and 2003 at AGRO and KONZ we will rely on new ETM+ imagery with existing algorithms to map land cover, LAI, and 
fAPAR. These are used with tower meteorological data to model GPP only, as there will be no new NPP measurements for these sites 
during those years (see field activity schedule). 

For the purposes of assessing LUE algorithms, such as that used by MODLand, BigFoot will produce daily 1 km resolution data 
layers for PAR (photosynthetic active radiation), fAPAR, APAR (absorbed PAR), and g (GPP efficiency factor). In each case, these 
data layers are initially derived at the 25 m resolution and aggregated to 1 km. PAR comes from the tower meteorological 
observations and DEM-based interpolations. For fAPAR, we map its distribution with ETM+ imagery for multiple dates across the 
growing season (described earlier). Continuous measurements of transmittance and reflectance at the flux tower help with the 
interpolation between the dates for which clear-sky ETM+ imagery is available. We then create a daily g surface by dividing model-
based daily GPP (checked against tower based GPP) by the daily APAR (PAR*fAPAR) just described. Thus, we produce a continuous 
record of spatially and temporally varying PAR, fAPAR, and APAR which can be aggregated to the 1 km grid cells and 8-day 
averages needed for direct comparisons with the components of the MODLAND NPP algorithm. These data could also be used with 
other LUE algorithms. 

We can also gain insights into the daily unstressed or maximum GPP efficiency ( g*) which is used in the MODLand NPP 
algorithm. Looked at for all days across the growing season, the scatter plot of APAR against GPP at the daily time scale indicates 
the variability in g for that vegetation type. GPP in this case could be taken directly from the tower data so that model accuracy is 
not an issue. The slope of the line demarking the upper limit of the scatter is the maximum GPP efficiency at the time scale relevant 
to the satellite-based LUE algorithms. By examining the relationship of departures from this line on any given day, and 
environmental factors such as maximum air temperature and daily average VPD, we evaluate the scalars for stress effects typically 
used in operational LUE algorithms (e.g., Goetz et al. 1999). Ultimately, these observations could become the basis for a new 
biome-specific parameterization scheme for g* and the stress factor scalars. This scheme can be tested for eventual wider 



application using the MODLand land cover, PAR, and fAPAR products. Whether for validation or parameterization, better 
understanding of how g varies across biomes and varies over the growing season within a biome is needed (Goetz and Prince 1999).

Objective 4: Validation of MODLand land cover, LAI, fAPAR, and NPP products.

 

There are several ways in which we validate MODLand products. The simplest and most straight-forward is direct map-to-map 
comparisons, and we do this for each land cover, LAI, fAPAR, and NPP BigFoot surface created. Within one 1 km2 MODIS cell, there 
are 1600, 625 m2 cells, so for each cell the frequency distributions of fine-grain BigFoot values can be contrasted against the single 
cell value of a MODIS product. This is particularly informative for land cover, and at the very least we would expect the MODLand 
cover class call for a given cell to be the same as the mode of the fine-grained distribution. For the numerical surfaces (e.g., LAI) we 
calculate the mean of the fine-grained values and compare this against the value in the cell of the coincident MODLand product. 
Summarizing the data across a single site, we evaluate the 25 MODLand cells in relation to the BigFoot aggregated 1 km fine-
grained modes and means. These same data can be compared across sites. The MODLand GPP product is produced each 8 days, so 
for the purposes of comparison an 8-day 1 km BigFoot GPP product will be created. 

The most basic level of confirmatory validation is that the slope of the BigFoot vs. MODLand trends across sites for the numerical 
products is positive and close to 1.0. The next level is that the absolute values match, and then that there is good correspondance 
among cells of a given site. Undoubtedly, there will be discrepancies. The MODLand surfaces can be compared directly to the field 
data, but this is probably only valid in the central, flux tower cell where the density of ground plots is high. However, the accuracies 
of BigFoot maps (characterized from comparisons with the field data) serve as confidence estimates for the quality of BigFoot 
surfaces as validation media. 

To the degree that there are errors in our surfaces, some of the 
differences observed between BigFoot and MODLand surfaces 
will be unexplainable. Given our protocols and our ability to 
tailor a mapping process to a given site, however, the quality of 
our maps should be high enough (e.g., Figure 8d) to provide 
strong insights into the discrepancies between the BigFoot and 
MODLand NPP products. As such, we conduct several scaling 
exercises that involve generalization of the BigFoot surfaces. 
These include translation of BigFoot classes into MODLand 
classes, as was demonstrated by Thomlinson et al. (1999). 
Another is to successively coarsen the grain size of the BigFoot 
input images up to 1 km (e.g., Milne and Cohen 1999). With 
each kind and level of generalization we rerun the process 
models and evaluate the change in NPP output (Reich et al. 
1999). If, for example, use of the 17+ classes of IGBP land 
cover, provides significantly better NPP estimates than use of 6
+ classes of the current MODLand NPP product, a perhaps 
simple but effective means of improving the MODLand product 
will be at hand. If 250 m surfaces are required to, on average, 
preserve biome-specific vegetation patterns, then more reliance on the MODIS 250 m bands may be in order (Turner et al. 2000). 

Other factors contribute to differences between the MODLand and BigFoot NPP products. First, both approaches use PAR, Tmin 
(minimum temperature), Tmax (maximum temperature), and daily average VPD. S. Running will therefore compare the BigFoot 
meteorological time series data for each site (derived from the flux towers) with that delivered to the MODLand algorithm by the 
NASA Data Assimilation Office climate model. A second factor is the spatial and temporal variability in light use efficiency. We 
can determine n (NPP/APAR) for each cover type from our NPP measurements and APAR accounting. We then run a simple n 

http://dao.gsfc.nasa.gov/experiments/assim54A.html


type LUE algorithm (Ruimy et al. 1994) with variations in the spatial resolution (25 m to 1 km) and land cover generality. These 
comparisons are informative about the sensitivity of LUE algorithms to spatial resolution and land cover generalization (Turner et 
al., in preparation).

 

Objective 5: Facilitating the continued development of GTOS.

GTOS has the aim of improving the quality and coverage of terrestrial ecosystem data, and integrating them into a worldwide 
knowledge base that will help us manage our planet wisely for future generations. A priority activity within GTOS is the Global 
Terrestrial Observing Network (GT-Net), which is envisaged as a "system of networks," formed by linking existing monitoring sites 
and networks as well as planned satellite remote sensing systems, with the aim of better understanding global and regional change. 
The main objective of GT-Net is to encourage existing networks, with similar objectives and geographical coverage to become 
more efficient in making observations, share and exchange environmental data, define data and information access policy, develop 
metadata standards as well as local, regional, and global in situ datasets, and undertake demonstration projects. The first 
demonstration project concentrates on improving current estimates of global terrestrial NPP. The project adopts a hierarchical 
approach and uses models that combine both satellite data and in situ observations. A set of output products, which have NPP as 
their common foundation, will be produced. The NPP Demonstration Project has two primary goals: distribute global standard NPP 
products (e.g., MODLand) to regional networks for evaluation/validation, and translate this standard product to regionally specific 
crop, range, and forest yield maps for land-management applications. 

BigFoot is in a position to faciltate advancement of GTOS goals. Although we have not explicitly requested funds to conduct any 
specific GTOS activities, we think it is important to integrate our work within the context or framework of GTOS. To this end, we 
are collaborating with Jim Gosz, the Chair of the GTOS Steering Committee, on this proposal. Through his leadership role in 
LTER, Gosz supported BigFoot by funding the 1996 workshop and is now funding a second workshop in 2001 for BigFoot to bring 
together scientists from the International LTER community to take the first solid step towards fullfilling the goals of the GTOS NPP 
project. BigFoot (Turner) organized a carbon flux scaling workshop at the 2000 LTER All Scientists Meeting (ASM). The 2001 
workshop is a follow-on to the ASM workshop. At this workshop participants integrate their NPP field and related data with remote 
sensing and models to develop NPP surfaces using BigFoot protocols. These surfaces are then tested against MODLand NPP 
surfaces in the same way that BigFoot is comparing surfaces. Additionally, we are updating our field manual (Campbell et al. 1999, 
see Appendix) for further distribution throughout the GTOS network. The BigFoot conceptual design is also shared with other 
interested scientists via Gower's involvement in GCTE. Gower is a member of the GCTE Science Steering Committee and the 
development of a global terrestrial observing systems is recognized as an important goal by this organization (Canadell et al. 1999). 

  

 

 

  

References Cited

Atkinson, P., R. Webster, and P. Curran. 1992. Cokriging with ground-based radiometry. Remote Sensing of Environment 41:45-60

Belward, A.S. and T. Loveland 1995. The IGBP-DIS 1 km land cover project: Remote sensing in action. In: Proc. 21st Annual 
Conference of the Remote Sensing Society Southhanpton, UK pp 1099-1106.

Bhatti, A.U., D.J. Mulla, and B.E. Frazier. 1991 Estimation of soil properties and wheat yields on complez eroded hills, using 
geostatistics and Thematic Mapper images. Remote Sensing of Environment 41:45-60

Bonham, C. 1989. Measurements for Terrestrial Vegetation. John Wiley & sons, New York.

Bunnell, F., and D. Vales. 1990. Comparison of methods for estimating forest overstory cover: differences among techniques. 

 

http://www.fao.org/GTOS/


Canadian Journal of Forestry 65:544-547.

Carpenter, G., M Gjaja, S. Gopal, and C. Woodcock. 1997. ART neural networks for remote sensing: vegetation classification from 
Landsat TM and terrain data. IEEE Transactions on Geoscience and Remote Sensing. 35:308-325.

Chen, J., P.W. Rich, S.T. Gower, J.M. Norman, and S. Plummer. 1997. Leaf area index of boreal forests: Theory, techniques and 
measurements. J. Geophys. Res. 102 D24:29,429- 29,444.

Clinger, W. and J.W. Van Ness. 1976. On unequally spaced points in time series. The Annals of Statistics 4:736-745.

Curran, P. and P. Atkinson. 1998. Geostatistics and Remote Sensing. Progress in Physical Geography 22:61-78.

Dungan, J. 1998. Spatial Prediction of Vegetation Quantities using ground and image data. International Journal of Remote Sensing 
19:267-285

Fassnacht, K.S., S.T. Gower, J.M. Norman and R.E. McMurtrie. 1994. A comparison of optical and direct methods for estimating 
foliage surface area index in forests. Agr. Forest Meteorol. 71:183-207.

Field, C.B., J.T. Randerson, and C.M. Malstrom. 1995. Global Net Primary Production: combining ecologyand remote sensing. 
Remote sensing of Environment 51:74-88

Fortin, M., J., P. Drapeau, and P. Legendre. 1989. Spatial autocorrelation and sampling design in plant ecology. Vegetatio 83:209-
222.

Gohin, F., and G. Langlois. 1993. Using Geostatistics to Merge In-Situ Measurements and Remotely-Sensed observations of sea 
surface temperature. International Journal of Remote Sensing 14:9-19

Gower, S.T. and J.M. Norman. 1991. Rapid estimation of leaf area index in conifer and broad-leaf plantations. Ecology 72:1896-
1900.

Gower, S.T., J. Vogel, J.M. Norman, C.J. Kucharik, S.J. Steele, T.K. Stow. 1997. Carbon distribution and net primary production of 
aspen, jack pine and black spruce BOREAS forests. J. Geophys. Res. 102 D24:29,029-29,041.

Gower, S.T., Kucharik, C.J., and J.M. Norman. 1999. Direct and indirect estimation of leaf area index, fAPAR and net primary 
production of terrestrial ecosystems. Remote Sensing of Environment 70:29-51.

Hunt, E.R. Jr. 1994. Relationship between woody biomass and PAR conversion efficiency for estimating net primary production 
from NDVI. International Journal of Remote Sensing 15:1725-1730.

Hunt, E.R., Jr., S.C. Piper, R. Nemani, C.D. Keeling, R.D. Otto, and S.W. Running. (1996). Global net carbon exchange and intra-
annual atmospheric CO2 concentrations Predicted by an Ecosystem Process Model and Three-Dimensional Atmospheric Transport 
Model. Global Biogeochemical Cycles 10: 431-456.

Journel, A.G., and F. Albert. 1989. Non-Gausian Data Expansion in the Earth Sciences. Terra Nova 1:123-134

Journel, A.G., and C.J. Huijberts. 1978. Mining Geostatistics Academic Press Inc. Ltd., London, England

Kittel, T. G. F., N. A. Rosenbloom, T. H. Painter, D. S. Schimel, and VEMAP modeling participants. 1995. The VEMAP integrated 
database for modeling United States ecosystem/vegetation sensitivity to climate change. Journal of Biogeography 22:857-862.

Moody, A. and C.E. Woodcock. 1995. The influence of scale and the spatial characteristics of landscapes on land-cover mapping 
using remote sensing. Landscape Ecology 10:363-379.

Muller-Dombois, D., and H. Ellenberg. 1974. Aims and Methods in Vegetation Ecology. John Wiley & Sons, New York.

Prince, S.D. and S.N. Goward. 1995. Global Primary Production: a remote sensing approach. Journal of Biogeography 22:815-835.

Ruimy, A., B. Saugier, and G. Dedieu. 1994. Methodology for the estimation of terrestrial net primary production from remotely 
sensed data. Journal of Geophysical Research 99:5263-5283.

Running, S. W., C. O. Justice, V. Salmonson, D. Hall, J. Barker, Y. J. Kaufmann, A. H. Strahler, A. R. Huete, J.-. Muller, V. 
Vanderbilt, Z.M. Wan, P. Teillet, and D. Carneggie. 1994. Terrestrial remote sensing science and algorithms planned for EOS/
MODIS. International Journal of Remote Sensing 15: 3587-3620.

Running, S.W., R.R. Nemani, R.D. Hungerford. 1987. Extrapolation of synoptic meteorological data in mountainous terrain and its 
use for simulating forest evapotranspiration and photosynthesis. Canadian Journal of Forest Research 17:472-483.

Ryan, M.G. 1991. A simple method for estimating gross carbon budgets for vegetation in forest ecosystems. Tree Physiology 9:255-
266.



Steele, S.J., S.T. Gower, J. Vogel, J.M. Norman. 1997. Root mass, production and turnover of boreal aspen, jack pine and black 
spruce forests. Tree Physiol. 17:577-587.

Wimbush, D., M. Barrow, and A. Costin. 1967. Color Stereophotography for the Measurement of Vegetation. Ecology 48:150-152. 

  

 

 

 

 

 

 

Site
Name

Latitude Longitude Path Row
UTM X 
Coord

UTM Y 
Coord

UTM 
Zone

NOBS
Center

55.885260 -98.477268 33 21 532698 6193433 14N

NOBS
Tower

55.879547 -98.480843 33 21 532479 6192795 14N

KONZ
Center

39.089073 -96.571398 28 33 710046 4329469 14N

 



KONZ
Tower

39.082286 -96.560251 28 33 711030 4328742 14N

AGRO
Center

40.0066580 -88.291535 22 32 389764 4429295 16N

AGRO
Tower

40.006627 -88.291030 22 32 389807 4429291 16N

HARV
Center

42.528513 -72.172907 13 30 732194 4712333 18N

HARV
Tower

42.538259 -72.171378 13 30 732283 4713419 18N

TUND
Center

71.271908 -156.613307 79 10 585509 7909410 4N

TUND
Tower

71.280866 -156.612205 79 10 585509 7910410 4N

SEVI
Center

34.350858 -106.689897 33 36 344578 3802353 13N

SEVI
Tower

34.360290 -106.700285 33 36 343640 3803415 13N

TAPA
Center

-2.869745 -54.949355 227 62 727950 9682600 21S

TAPA
Tower

-2.856664 -54.958919 227 62 726889 9684049 21S

METL
Center

44.450722 -121.572812 45 29 613554 4922926 10N

METL
Tower, 
Old Pine

44.499166 -121.622369 45 29 609520 4928239 10N

METL
Tower, 
Young 
Pine

44.437189 -121.566756 45 29 614062 4921431 10N

CHEQ
Center

45.945404 -90.272475 25 28 246360 5093190 16N

CHEQ
Tower

45.945278 -90.274444 25 28 245207 5093182 16N
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