# ACT-America MFLL Level–2 Data Product Catalog MFLL Weighting Function Product

LaRC MFLL Working Group

NASA Langley Research Center

#### Hampton, VA 23681

March 1, 2021

#### 1. Introduction

The ACT-America (Atmospheric Carbon and Transport – America) project is a NASA Earth Venture Suborbital-2 mission designed to study the transport and fluxes of greenhouse gases (GHGs), particularly atmospheric carbon dioxide (CO<sub>2</sub>) and methane (CH<sub>4</sub>), across the eastern United States. It has three specific objectives: 1) quantification and reduction of uncertainty in simulations of atmospheric transport of CO<sub>2</sub> and CH<sub>4</sub>; 2) quantification and reduction of uncertainty in prior flux estimates of CO<sub>2</sub> and CH<sub>4</sub>; and 3) evaluation of the ability of the OCO-2 satellite to capture regional-scale, lower tropospheric patterns of column CO<sub>2</sub> (XCO<sub>2</sub>). For these purposes, key priorities of the ACT-America field campaigns are devoted to observations of CO<sub>2</sub> distributions and their related synoptic weather systems. Within various GHG observing sensors used by ACT-America, the intensity-modulated continuous-wave (IM-CW) CO<sub>2</sub> lidar, namely Multifunctional Fiber Laser Lidar (MFLL), is the crucial instrument onboard the NASA C-130 aircraft in measuring column CO<sub>2</sub>. This lidar was jointly developed and demonstrated for the capability of remote column CO<sub>2</sub> measurements by the NASA Langley Research Center and the Harris Space and Intelligence Systems Corp in preparing for the future NASA ASCENDS (Active Sensing of CO<sub>2</sub> Emissions over Nights, Days, and Seasons) mission [1-3]. The released MFLL data were collected during the first four ACT-America field campaigns: summer 2016, winter 2017, fall 2017 and spring 2018. That is, they covered all four seasons. The current released product is the normalized weighting functions of MFLL XCO<sub>2</sub> retrievals at the time and location of the instrument measurements for all individual flights during the four field campaigns. Note that for carbon science community and general end-users, MFLL XCO<sub>2</sub> measurements from the four ACT-America field campaigns can be found from the MFLL Level-2 Lite or other Level-2 XCO<sub>2</sub> products publicly.

The MFLL lidar system transmits a laser beam with online and offline wavelengths simultaneously on the 1.57- $\mu$ m CO<sub>2</sub> absorption line. The online wavelength is positioned on the CO<sub>2</sub> absorption line center at 1571.112 nm, and the two offline wavelengths are set to be ±50 pm on either side of the absorption line. Each wavelength is modulated with a unique orthogonal waveform before being combined for simultaneous transmission through the atmosphere [4-6].

The individual wavelengths are then separated from the combined received signal through cross correlating the received signal by each orthogonal waveform. The result of this cross-correlation allows the determination of a backscatter profile for each wavelength. From this, range to a scattering surface and signal amplitude are determined. The MFLL instrument currently uses orthogonal linear swept frequency waveforms. A systematic method for choosing these waveforms has been developed [4]. CO<sub>2</sub> column differential absorption optical depth (DAOD) values are estimated from combined online and offline measurements using the Integrated Path Differential Absorption (IPDA) approach [1-3, 7]. The DAOD measurements, then, are converted to XCO<sub>2</sub> values based on the pressure, temperature and humidity meteorological conditions and assumed vertically uniformly distributed CO<sub>2</sub> profiles at the measurement time and location and on pre2016 HITRAN spectroscopic model [7].

The evaluation of ACT-America field campaign data [7] has shown that the lidar  $CO_2$  measurements are consistent from season to season and have an absolute calibration uncertainty (standard deviation) of 0.80 ppm. The CO<sub>2</sub> measurement precisions for 0.1-s, 1-s, 10-s, and 60-s averages are found to be 3.4 ppm, 1.2 ppm, 0.43 ppm, and 0.26 ppm, respectively, and the drift in XCO<sub>2</sub> over one-hour of flight time is very small and below 0.1 ppm. Because of the unprecedented high stability, accuracy and precision, the ACT-America MFLL data have been used for many mission science analysis [e.g., 8].

## 2. MFLL Normalized Weighting Function

The XCO<sub>2</sub> product release of the ACT-America MFLL level-2 data [7, 9] is targeted at the endusers of CO<sub>2</sub> observing, modeling and other sciences, society and public applications. The MFLL level-2 data products and their related detailed descriptions can be found in ACT-America data archive center [9]. Because of the distinct spectral characteristics of MFLL online and offline wavelengths, the MFLL measured column averaged CO<sub>2</sub> values have certain distinct vertical weights on  $CO_2$  profiles depending on the pressure, temperature and humidity meteorological conditions and the wavelengths used at the measurement time and location [7]. The wavelengths were recorded by MFLL during its flight periods, and the meteorological data were obtained from the Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA-2) weather product of the NASA Goddard Space Flight Center (https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/). Furthermore, the vertically averaged CO<sub>2</sub> retrievals from MFLL measurements are also influenced by the measured ranges from the CO<sub>2</sub> remote sensor to the backscatter. This vertical weighting feature (or weighting function) is The weighting functions of individual  $CO_2$ unique for MFLL retrieved XCO<sub>2</sub> values. measurement profiles were calculated with an assumption of a uniform CO<sub>2</sub> vertical profile of 400 ppm, and their related calculated DAOD values were used as the scaling factor for the MFLL measured DAODs for MFLL XCO<sub>2</sub> retrieval. The weighting coefficients in the weighting functions were reported in atmospheric vertical pressure coordinate and normalized by their averages. Since some end-users of the product may not be familiar with the normalized

weighting functions, in order to make the  $CO_2$  observational product more friendly to broad endusers in the science and application communities, the MFLL working group of the ACT-America project provides this weighting function product for the end-users. The normalized weighting functions were given at the observational time and location of MFLL XCO<sub>2</sub> measurements and calculated in the same way as that during the MFLL XCO<sub>2</sub> retrieval [7] (also, c.f., the previous brief discussions).

The sampling rate of the provided weighting function product is 10-s, which is equivalent to a horizontal spatial resolution about 1.3 km under the nominal C-130 aircraft cruising speed of 250 knots. As of the reported MFLL XCO<sub>2</sub> values in the MFLL Level-2 Lite product the weighting functions represent the normalized weights along the nadir direction from the MFLL instrument onboard of the ACT-America C-130 aircraft to the main backscatters for the lidar as indicated by the MFLL range measurements. The vertical profiles of these weighting functions are calculated based on air pressure coordinator [7] with 30-m vertical resolution. Thus, the total number (M)of weights for a specific vertical profile is the number of the multiples of 30 meters from the range plus one due to the residual of 30-m on the range. That is, if  $R = 30 \times m + d$ , where R is the range, d is the residual of R on 30, and m is the multiple of 30, the total number M of the weights in a particular vertical profile, then, equals to m plus 1, or, M = m + 1. The reported weighting profiles in this weighting function product are the weighting function values normalized by the averages of their corresponding weighting profile values as indicated in reference [7]. Note that when a range measurement at a particular time and location during an ACT-America flight was not available, the closest available neighboring range within a time window of one second or instrument flight altitude values were used in the weighting function calculation. So, for the end-user's convenience, the range measured by MFLL is also provided in this normalized weighting function product. The details in calculating the weighting functions reported can be found in reference [7].

The weighting function product is organized in HDF5 format. The information on the day that their corresponding MFLL data were collected is provided as a part of filename, following the ACT-America file naming convention [10]. Each weighting function file contains 4 parameters for each 10-s profile sample. A complete list of the data file contents is provided in Table 1 in the parameter information section. The time and location were recorded by the Global Positioning System (GPS) instrument of the C-130 aircraft, and the range values were directly obtained from MFLL ranging measurements as in the MFLL Level-2 Lite and other Level-2 products. Detailed information on the MFLL data can be found in references [7][9].

## 3. Parameter Information for Weighting Function Product

The parameters provided by the MFLL weighting function product are MFLL sampling time and location (longitude, latitude and altitude) determined by the C-130 GPS system, as a part of the REVEAL data of NASA aircraft data sets (c.f., Ancillary data in next section). The range measurements are reported as nadir values. Table 1 lists these parameters. Users also can find

their related information from the documentations of MFLL data processing [7] and MFLL level 2 product [9].

| Parameter Name     | Units                         | Dimension                     | Description                                                                                                                          |
|--------------------|-------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Time_UTC           | second                        | N                             | The time of the instrument taking measurements in the second of the day in UTC                                                       |
| Position           | (degree,<br>degree,<br>meter) | $N \times 3$                  | Latitude, longitude and altitude of the instrument at the time taking measurements                                                   |
| Range_Nadir        | meter                         | N                             | The range from the instrument onboard the C-130 aircraft to the backscatter in nadir direction                                       |
| Weighting_Pressure | N/A                           | $\mathbf{M} 	imes \mathbf{N}$ | Normalized weighting function values<br>calculated from air pressure coordinate for<br>individual vertical profiles at flight tracks |

Table 1 Parameter Information

Note: N and M are the total numbers of the samples in an ACT-America weighting function product file and of the normalized weights in vertical profiles, respectively.

# 4. Ancillary Data Information

Ancillary data that were used in the ACT-America MFLL normalized weighting function calculations are shown in Table 2. These data are interpolated to the flight time and location of individual MFLL measurements with the spatiotemporal resolution discussed in previous section.

#### Ancillary data products

- 1. REVEAL data from the NASA aircraft data archive at <u>https://asp-archive.arc.nasa.gov/</u> or the ACT America Housekeeping data product at <u>https://www-air.larc.nasa.gov/cgi-bin/ArcView/actamerica.2016</u>
- 2. Modern-Era Retrospective analysis for Research and Applications version 2 (Merra 2), weather data available at <u>https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/</u>
- 3. Global Land One-kilometer Base Elevation (GLOBE) GLOBE Task Team and others (Hastings, David A., Paula K. Dunbar, Gerald M. Elphingstone, Mark Bootz, Hiroshi Murakami, Hiroshi Maruyama, Hiroshi Masaharu, Peter Holland, John Payne, Nevin A. Bryant, Thomas L. Logan, J.-P. Muller, Gunter Schreier, and John S. MacDonald), eds., 1999. The Global Land One-kilometer Base Elevation (GLOBE) Digital Elevation Model, Version 1.0. National Oceanic and Atmospheric Administration, National Geophysical

Data Center, 325 Broadway, Boulder, Colorado 80303, U.S.A. Digital data base on the World Wide Web (URL: http://www.ngdc.noaa.gov/mgg/topo/globe.html) and CD-ROMs.

| Data name | Description                                                                                                                                                                                                                 |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| REVEAL    | NASA aircraft data; For the MFLL data processing of ACT-America field campaign measurements, they were records of C-130 aircraft during campaign flights                                                                    |
| MERRA-2   | Meteorological profiles of the NASA Goddard GMAO official product of<br>the Modern-Era Retrospective analysis for Research and Applications<br>version 2                                                                    |
| DEM       | Global digital elevation model used in evaluating lidar returns from surface<br>or clouds during MFLL XCO <sub>2</sub> retrieval. For lidar retrieval, Global Land<br>One-kilometer Base Elevation (GLOBE) product is used. |

Table 2 Ancillary data

# References

- Jeremy T. Dobler, F. Wallace Harrison, Edward V. Browell, Bing Lin, Doug McGregor, Susan Kooi, Yonghoon Choi, and Syed Ismail, Atmospheric CO<sub>2</sub> column measurements with an airborne intensity-modulated continuous wave 1.57 μm fiber laser lidar, Appl. Opt. 52, 2874-2892, 2013.
- 2. Bing Lin, Syed Ismail, F. Wallace Harrison, Edward V. Browell, Amin R. Nehrir, Jeremy Dobler, Berrien Moore, Tamer Refaat, and Susan A. Kooi, Modeling of intensity-modulated continuous-wave laser absorption spectrometer systems for atmospheric CO<sub>2</sub> column measurements, Appl. Opt., 52, 7062-7077, 2013.
- Bing Lin, Amin R. Nehrir, F. Wallace Harrison, Edward V. Browell, Syed Ismail, Michael D. Obland, Joel Campbell, Jeremy Dobler, Byron Meadows, Tai-Fang Fan, and Susan Kooi, Atmospheric CO<sub>2</sub> column measurements in cloudy conditions using intensitymodulated continuous-wave lidar at 1.57 micron, Opt. Express, 23, A582-A593, 2015.
- 4. Joel F. Campbell, Nonlinear swept frequency technique for CO<sub>2</sub> measurements using a CW laser system, Appl. Opt., 52, 3100-3107, 2013.
- 5. Campbell, J. F., B. Lin, A. Nehrir, F.W. Harrison, M. Obland, Super-resolution technique for CW lidar using Fourier transform reordering and Richardson–Lucy deconvolution, Opt. Lett., 39, 6981-6984, 2014a.
- 6. Joel F. Campbell, Bing Lin, Amin R. Nehrir, F. Wallace Harrison, and Michael D. Obland, High-resolution CW lidar altimetry using repeating intensity-modulated waveforms and Fourier transform reordering, Opt. Lett., 39, 6078-6081, 2014b.
- Campbell, J., B. Lin, E. Browell, M. Obland, J. Dobler, W. Erxleben, D. McGregor, C. O'Dell, E. Bell, S. Pal, B. Weir, T. Fan, S. Kooi, A. Corbett, K. Davis, I. Gordon, R. Kochanov, Field Evaluation of Column CO<sub>2</sub> Retrievals from Intensity-Modulated Continuous-Wave Differential Absorption Lidar Measurements during ACT-America, Earth and Space Science, DOI: 10.1029/2019EA000847, 2020.
- Bell, E., C. O'Dell, K. Davis, S. Pal, B. Lin, S. Kooi, T. Fan, J. Campbell, E. Browell, J. Dobler, W. Erxleben, B. Weir, and S. Denning, Evaluation of OCO-2 XCO<sub>2</sub> Variability at Local and Synoptic Scales using Lidar and In Situ Observations from the ACT-America Campaign, Journal of Geophysical Research: Atmospheres, 125, e2019JD031400. https://doi.org/10.1029/2019JD031400, 2020.
- 9. Oak Ridge National Laboratory: ACT-America: L2 Remotely Sensed Column-average CO2 by Airborne Lidar, Eastern USA, ORNL DAAC, 2020. (<u>https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds\_id=1649</u>)
- 10. Cook, B., G. Chen, Y. Wei, and T. Lauvaux, Data Management for ACT-America, Documentation for ACT-America Data (<u>https://www-air.larc.nasa.gov/missions/ACT-America/index.html</u>.)

# **Contacts:**

For science, measurement and other general questions, contact Dr. Bing Lin (email: bing.lin@nasa.gov)

For data processing questions, contact Dr. Joel Campbell (email: joel.f.campbell@nasa.gov)

For data file questions, contact Tai-Fang (Alice) Fan (email: <u>tai-fang.fan-1@nasa.gov)</u>

For MFLL instrument questions, contact Dr. Jeremy Dobler (email: jeremy.dobler@s-3llc.com)