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1. Context 

The approach adopted involved performing a multi-site analysis centered on a network of 80 flux 

towers located within the extended ABoVE domain, then an upscaling of the results obtained at site-

level using the MODIS MAIAC dataset, spanning the whole extended ABoVE domain from 2002 to 

2015, at a 1 kilometer and sub-daily resolution. 

The first step involved collecting and processing site-level data (mainly carbon flux data to use as a 

reference). The second step involved the correction and analysis of MODIS MAIAC data at site-level. 

The final step was to develop a framework to produce large-scale estimates of phenology and 

ecosystem sensitivity to climate change. 

2. General approach 

While the gross primary productivity (GPP) and the light use efficiency (LUE) are highly dynamic at 

the sub-daily scale and are therefore difficult to upscale from flux towers to satellite scale due to a 

temporal resolution mismatch, the daily variability in GPP can be described using a light-curve model 

similar to the one used for partitioning flux-tower NEE measurements into GPP and Ecosystem 

respiration (Reco). This allows us to deconvolve the GPP variability into 3 components: the absorbed 

photosynthetically active radiation (aPAR) which varies at the daily scale, the maximum GPP or 

maximum photosynthetic capacity (GPPmax), and the photosynthetic limitation or amount of light 

needed to reach maximum capacity (PPFDmax). These two components (GPPmax and PPFDmax) 

vary seasonally and can therefore be related to satellite reflectance measurements sampled at the 

daily scale. 

This process allows us to generate a light-curve parameter model, taking MAIAC corrected 

reflectance measurements as an input, which can be used to estimate GPP at a daily resolution. The 

process involved in the derivation of this model and its use to compute GPP is described in Figure 1. 
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Figure 1: functional diagram of the tile level GPP model. Blue components are dataset or process at 

tile-level scale, orange components are datasets of process at flux-tower level. 

3. Algorithm 

3.1. Estimation of 𝑓𝑎𝑃𝐴𝑅𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛  at tile level 

The light curve model used both at the flux tower level to extract GPPmax and PPFDmax, and at tile 

level to predict GPP from remote-sensing derived GPPmax and PPFDmax estimations uses aPAR 

rather than PAR and requires an independent estimation of the fraction of absorbed PAR (faPAR). 

This process is required to decorrelate the GPPmax (dependent on the area-based amount of 

chlorophyll and therefore faPAR) and PPFDmax which would be dependent on 𝑓𝑎𝑃𝐴𝑅𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛  if 

PAR was used as the light-curve dependent variable instead of aPAR. 

The estimation of 𝑓𝑎𝑃𝐴𝑅𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛  at tile level was done through a process of spectral 

decomposition of the MAIAC reflectance measurements at daily scale. A spectral library was 

compiled in order to represent the spectral variability of the ABoVE domain through its whole 

seasonal cycle. Leaf spectral measurements from 400 to 2500 nm were collected from the EcoSis 

database (https://ecosis.org/), by downloading all datasets located within the coverage of the 

MAIAC dataset. Leaf reflectance spectra measurements were pulled from the Ecosis database 

(https://ecosis.org/ ), measurements corresponding to locations within the MAIAC dataset footprint 

were selected. Soil and water spectra were pulled from the USGS spectral library 

(https://crustal.usgs.gov/speclab/QueryAll07a.php).  

The resulting compiled database was first screened for artefacts (reflectance values less than 0 or 

greater than 1, or spectra exhibiting discontinuities bigger than 1% in reflectance). The resulting 

spectra were then used to estimate a MODIS-equivalent spectral sample using the following 

equation: 

https://ecosis.org/
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𝑅𝑏 =
∫ 𝑅 ∗ 𝑇𝑏
2500

300

∫ 𝑇𝑏
2500

200

 

With Rb the MODIS band-equivalent reflectance, R a cubic spline fitted to the spectrum being 

analyzed and T the MODIS response curve in the considered MODIS band. This convolution was done 

analytically using Matlab symbolic math toolbox. 

With R a cubic spline fitted to the considered ASD spectrum, and PPFD a cubic spline fitted to a 

standard PPFD spectrum (ASTM G-173-03 reference spectrum). 

A second filter was then applied to remove redundant spectra (correlations between simulated 

MODIS reflectances superior to 0.999). 

The resulting spectral library can be used to estimate the composition of each pixel for each 

observation through solving the following equation system: 

{
 
 

 
 𝑅𝑀𝐴𝐼𝐴𝐶 = ∑ 𝑎𝑖 ∗ 𝑅𝑖

𝑙𝑖𝑏𝑟𝑎𝑟𝑦 𝑠𝑛𝑜𝑤

𝑖 𝑠𝑛𝑜𝑤

+ ∑ 𝑎𝑖 ∗ 𝑅𝑖
𝑙𝑖𝑏𝑟𝑎𝑟𝑦

𝑖 𝑠𝑜𝑖𝑙

+ ∑ 𝑎𝑖 ∗ 𝑅𝑖
𝑙𝑖𝑏𝑟𝑎𝑟𝑦

𝑖 𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛

+ 𝑏

0 ≤ 𝑎𝑖 ≤ 1
−1 < 𝑏 ≤ 0

∑𝑎𝑖 + 𝑏 = 1

 

This equation system was solved using the Interior point algorithm. 

The b coefficient stands for shadow effects, shadows being modeled as black bodies.  

To avoid confusion due to soil, snow and leaf spectra which happen to be similar to other 

components (i.e, dead leaf spectra which are similar to soil spectra), a last screening step is needed 

to obtain the final spectra library. 200 pure soil and snow MODIS observations were selected from 

the available extracted MAIAC data at the flux tower sites based on NDVI and the minimum daily 

NEE (NDVI<0 for snow selection, NDVI>0.3 and minimum daily NEE >0 for “soil”). Each spectrum of 

the library was decomposed using the pure MODIS observations, and the distribution of the 

coefficients obtained with MAIAC observations of a different class were collected. A confusion 

metric was defined as follow : 

𝐶𝑖 = 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒95%([𝑎𝑖
𝑐𝑙𝑎𝑠𝑠≠𝑐𝑙𝑎𝑠𝑠 𝑖]) 

All spectra for which the confusion index was higher than 1% were removed from the library. The 

resulting library counts 28 leaf spectra, 40 soil spectra and 4 water/snow spectra, which are shown 

in Figure 2.  

 

Figure 2: reflectance spectra of the filtered spectral library. 
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For each selected spectrum, an estimation of faPAR and faSW was computed while neglecting 

transmittance (assumed to be negligible), using the following equations : 

𝑓𝑎𝑃𝐴𝑅 =
∫ (1 − 𝑅) ∗ 𝑃𝑃𝐹𝐷
700

400

∫ 𝑃𝑃𝐹𝐷
700

400

 

𝑓𝑎𝑆𝑊 =
∫ (1 − 𝑅) ∗ 𝑃𝑃𝐹𝐷
2500

400

∫ 𝑃𝑃𝐹𝐷
2500

400

 

The simulated percentage of reflected PAR and shortwave radiation was computed for each flux 

tower site as follow: 

𝑅𝑃𝐴𝑅 = 1 −∑𝑎𝑖 ∗ 𝑓𝑎𝑃𝐴𝑅𝑖
𝑖

 

𝑅𝑆𝑊 = 1 −∑𝑎𝑖 ∗ 𝑓𝑎𝑆𝑊𝑖

𝑖

 

 

The obtained estimations were compared to the percentage of reflected PAR and shortwave 

radiation computed based on measured daily average downwelling and upwelling flux tower-based 

measurements (Figure 3).  

 

Figure 3: comparison between MAIAC and flux tower derived estimations of the percentage of 

reflected PAR (left panel, 16 sites, RMSE=6.7%) and shortwave radiation (right panel, 17 sites, 

RMSE=5.4%). 

All MAIAC observations across the extended ABoVE domain, from the year 2000 to 2017 were then 

averaged for each day. The Fcover of snow, soil and vegetation were computed over a random samle 

of 300000 observations as the sum of the coefficient a for the corresponding library spectra: 

𝐹𝑐𝑜𝑣𝑒𝑟 𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛 = ∑ 𝑎𝑖
𝑖 𝑣𝑒𝑣𝑒𝑡𝑎𝑡𝑖𝑜𝑛

 

And 𝑓𝑎𝑃𝐴𝑅𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛 was computed as: 
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𝑓𝑎𝑃𝐴𝑅𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛 = ∑ 𝑎𝑖 ∗ 𝑓𝑎𝑃𝐴𝑅𝑖
𝑖 𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛

 

As this process is computationally intensive, a 50 trees random forest was then fitted using the 

MAIAC reflectance data as an input in order to predict the estimated 𝑓𝑎𝑃𝐴𝑅𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛 across the 

random sample, and this random forest model was then used to interpolate 𝑓𝑎𝑃𝐴𝑅𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛 at tile 

level. 

 

3.2. Carbon flux data processing and light-curve parameters 

estimation 

The availability of a consistently processed dataset of carbon fluxes measurement covering a wide 

range of biomes and latitudes is a foundation for evaluating Boreal and Arctic ecosystems 

productivity via the use of remote sensing. This partitioning process has proved to be particularly 

challenging in ecosystems which exhibit low and highly variable gross productivity and ecosystem 

respiration such as artic and boreal ecosystems. 

Flux-tower level estimations of light-curve parameters are required in order to train the random 

forest which will be applied to the tile-level MAIAC data, and GPP estimates are required in order to 

validate the final GPP product.  

3.2.1. Dataset acquisition and consolidation 

3.2.1.1. Dataset description 

This dataset covers 80 flux tower sites. Those sites are located along a SE-NW gradient, spanning 

from grassland to tundra, including deciduous and evergreen forests (Table. 1). 

Site Name IGBP class latitude longitude 

CA-ARB WET 52.694999 -83.945226 

CA-ARF WET 52.70078 -83.955045 

CA-CF2 WET 58.6658 -93.83 

CA-Ca1 ENF 49.8673 -125.3336 

CA-Ca2 ENF 49.8705 -125.2909 

CA-Ca3 ENF 49.5346 -124.9004 

CA-Cbo DBF 44.31667 -79.9333 

CA-Cha MF 45.8847 -67.3569 

CA-DBB WET 49.1293 -122.9849 

CA-ER1 CRO 43.640458 -80.412303 

CA-Gro MF 48.2167 -82.1556 

CA-Let GRA 49.70928 -112.94017 

CA-MA1 CRO 50.164472 -97.876222 

CA-MA2 GRA 50.170972 -97.876222 

CA-MA3 GRA 50.177417 -97.868639 

CA-MR3 GRA 50.8671 -111.9045 

CA-MR5 GRA 50.9056 -111.8823 

CA-Man ENF 55.87962 -98.48081 

CA-NS1 ENF 55.87917 -98.48389 
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CA-NS2 ENF 55.90583 -98.52472 

CA-NS3 ENF 55.91167 -98.38222 

CA-NS4 ENF 55.91437 -98.380645 

CA-NS5 ENF 55.86306 -98.485 

CA-NS6 OSH 55.91667 -98.96444 

CA-NS7 OSH 56.63583 -99.94833 

CA-NS8 ENF 55.89806 -98.21611 

CA-Na1 ENF 46.4722 -67.1 

CA-Oas DBF 53.62889 -106.19779 

CA-Obs ENF 53.98717 -105.11779 

CA-Ojp ENF 53.91634 -104.69203 

CA-Qc2 MF 49.7598 -74.5711 

CA-Qcu ENF 49.26712 -74.0365 

CA-Qfo ENF 49.6925 -74.34206 

CA-SCB WET 61.3089 -121.2984 

CA-SCC ENF 61.3079 -121.2992 

CA-SF1 ENF 54.48503 -105.81757 

CA-SF2 ENF 54.25392 -105.8775 

CA-SF3 OSH 54.09156 -106.00526 

CA-SJ1 ENF 53.908 -104.656 

CA-SJ2 ENF 53.945 -104.649 

CA-SJ3 ENF 53.87581 -104.64529 

CA-TP1 ENF 42.66093611 -80.55951944 

CA-TP2 ENF 42.77441944 -80.458775 

CA-TP3 ENF 42.70681111 -80.34831389 

CA-TP4 ENF 42.710161 -80.357376 

CA-TPD DBF 42.635328 -80.557731 

CA-WP1 WET 54.95384 -112.46698 

CA-WP2 WET 55.5375 -112.3343 

CA-WP3 WET 54.47 -113.32 

US-A03 BSV 70.495328 -149.882297 

US-A10 BSV 71.3242 -156.6149 

US-An1 OSH 68.99 -150.28 

US-An2 OSH 68.95 -150.21 

US-An3 OSH 68.93 -150.27 

US-Atq WET 70.4696 -157.4089 

US-Bn1 ENF 63.919813 -145.378178 

US-Bn2 DBF 63.919813 -145.378179 

US-Bn3 OSH 63.92268 -145.74416 

US-Brw WET 71.3225 -156.60917 

US-EML OSH 63.8784 -149.2536 

US-FPe GRA 48.3077 -105.1019 

US-Fcr OSH 65.3968 -148.9348 

US-HVa WET 69.1423 -148.8412 

US-ICh OSH 68.6068 -149.2958 

US-ICs WET 68.6058 -149.311 
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US-ICt OSH 68.6063 -149.3041 

US-Ivo WET 68.4865 -155.7503 

US-MSR CRO 47.47578 -111.7207 

US-NGB SNO 71.280044 -156.609181 

US-NGC GRA 64.8614 -163.7008 

US-Prr ENF 65.12367 -147.48756 

US-Rpf DBF 65.1198 -147.429 

US-Uaf ENF 64.86627 -147.85553 

US-Upa WET 70.28147 -148.88483 

US-xBN ENF 65.15401 -147.50258 

US-xDC GRA 47.16165 -99.10656 

US-xDJ ENF 63.88112 -145.75136 

US-xHE OSH 63.87569 -149.21334 

US-xTL WET 68.66109 -149.37047 

US-xWD GRA 47.12823 -99.24136 

Table 1: list of processed flux tower sites 

The flux data from these flux tower sites was downloaded from Ameriflux and updated on the 

28/07/2020. 

These sites are distributed over 9 IGBP classes as show in table 2: 

IGBP class BSV CRO DBF ENF GRA MF OSH SNO WET 

Description 
Barren 
Sparse 

Vegetation 
Cropland 

Deciduous 
Broadleaf 

Forests 

Evergreen 
Needleleaf 

Forests 
Grassland 

Mixed 
Forest 

Open-
Shrubland 

Snow and 
Ice 

Permanent 
Wetlands 

Number of 
sites 

2 3 5 30 9 3 12 1 15 

Number of 
years 

15 7 61 270 45 18 56 8 79 

Table 2: distribution of the sites and site-years across sampled IGBP classes 

The following variables were extracted for each site: 

FC PPFD_BC_OUT RH_PI_F TA_PI_F 

FC_PI_F PPFD_DIF SC TIMESTAMP_START 

GPP_PI PPFD_DIR SC_PI_F TS 

GPP_PI_F PPFD_IN SWC TS_PI_1 

NEE_PI PPFD_IN_PI_F SWC_PI_F_1 USTAR 

NEE_PI_F PPFD_OUT SW_IN VPD_PI 

NETRAD PPFD_OUT_PI_F SW_IN_PI_F VPD_PI_F 

NETRAD_PI_F RECO_PI SW_OUT  

PPFD_BC_IN RECO_PI_F SW_OUT_PI_F 

PPFD_BC_IN_PI_F RH TA  

    
Table 3: list of extracted variables 

For variables measured in several locations at the same levels (temperature, incoming PPFD), 

the replicates were averaged. For variables measured at different levels along a vertical profile, 

all levels were extracted. 
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3.2.1.2. PPFD pre-processing 

The PPFD measurements suffer from three main issues which generate data gaps or introduce 

artificial differences between sites. These artefacts would affect the estimated aPAR at the flux 

tower level, hence the light curve parameters. In order to derive a generic light curve prediction at 

tile level, these artefacts need to be eliminated. Three different types of measurement error were 

addressed : 

- Sensor failure: sensors failures tend to be relatively frequent in boreal and arctic ecosystems 

due to environmental constraints (large changes in temperature, intense cold…). A new 

algorithm was designed to make use of ancillary measurements (Net Radiation, Shortwave 

radiation, PPFD at different levels) to predict PPFD and gapfill it in case of sensor failure. It uses 

a regression random forest to predict each variable using all available other variables 

(temperature, PPFD, SW at different levels) as independent variables. Each random forest is 

used to predict each variable, validated against the measured data, and used to gapfill the 

missing data. 

- Sensor offset: sudden changes in temperature and moisture can impact the electronics used to 

process the output of the PPFD sensors and introduce an offset, which may vary with 

temperature or moisture within the sensor. Such events were automatically detected by fitting 

a spline to the night-time PPFD data, and the estimated offset was subtracted (Fig. 3) 

 

Figure 3: Example of PPFD, rescaled SW and offset-corrected PPFD time series (site CA-Ca1) 

- Sensor bias: PPFD sensors over large networks of flux towers are rarely inter-calibrated, and 

there may be biases which can hamper inter-site comparisons. Moreover, these sensors are 

exposed to the weather and accumulate dust over time. For sites in remote locations, 

maintaining the sensors is a challenge, and the accumulation of dust can introduce a significant 

drift in PPFD measurement. These drifts were estimated by comparing clear sky PPFD 

measurements against a potential PPFD model (Fig. 4). The bias was estimated using the highest 

mode of the PPFD versus Potential PPFD ratio over a 1 month moving window, which captures 

clear sky observations. The resulting ratio is then used to correct the decrease of PPFD sensor 

sensitivity over time. 
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Figure 4: Example of PPFD bias correction (site CA-Ca1) 

3.2.1.3. NEE computation 

Nee was computed using FC (CO2 flux) and corrected by the storage term SC when available 

(NEE=FC+SC). As Boreal and Arctic sites can exhibit sudden spikes in NEE, and tend to have low 

respiration and photosynthesis, hence a low signal versus noise ratio, traditional spike-filtering 

techniques could not be used. A new filtering technique based on NEE distribution was used to filter 

out outliers. 

3.2.2. NEE U* correction 

3.2.2.1. U* damping effect model 

Traditional U* filtering (Papale et al. 2006), intended to filter out observations made when the level 

of air turbulence does not allow accurate carbon fluxes estimations, led to the deletion of up to one 

third of all observations in arctic sites, particularly during key periods such as the early spring, during 

the activation of photosynthesis. In low U* conditions, the measured NEE significantly 

underestimate the real NEE, and this underestimation increases as U* decreases. The relationship 

between U* and NEE was studied and extracted from the overall NEE variability while accounting for 

the effect of temperature and PPFD using a Random Forest model, and an analytic model was then 

formulated in order to describe the damping effect of U* on NEE measurements.  

For all site years, the NEE response to U* had a double-sigmoid shape. The following NEE damping 

ratio model was found to provide the best fit RMSE and the tightest parameters confidence 

intervals: 

𝐾
𝑈
∗(𝑈∗)=𝑒𝑟𝑓(

𝑈∗

𝑎
)
 

With a the fitted parameter. The 95% U* threshold can be retrieved using the following equation: 

𝑈95%
∗ = 𝑒𝑟𝑓𝑖𝑛𝑣(0.95) × 𝑎 

The following respiration model was then fitted to night-time NEE measurements: 

𝑅𝑒𝑐𝑜 = 𝐾𝑈∗ × (𝑏 × 𝑓𝑎𝑃𝐴𝑅 + 𝑐) × (0.5 + 0.5 × 𝑒𝑟𝑓 (
𝑇 − 𝑇𝑖𝑛𝑓𝑙

𝑇𝑟𝑎𝑛𝑔𝑒
)) 
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With a, b, c, 𝑇𝑖𝑛𝑓𝑙 and 𝑇𝑟𝑎𝑛𝑔𝑒 the fitted parameters.  

3.2.2.2. U* correction of carbon fluxes 

The obtained a values were then used to compute 𝐾𝑈∗  for each site-year, and NEE was corrected by 

dividing it by 𝐾𝑈∗to account for the damping effect of U*. Examples of uncorrected and corrected 

NEE are shown in Figure 5. 

 

Figure 5: Example of uncorrected and corrected NEE time series. 

3.2.3. Partitioning 

Carbon fluxes partitioning traditionally rely on fitting a model which describes the relationship 

between temperature and ecosystem respiration on night-time data and applying it to day-time data 

to estimate respiration and subtract NEE to obtain GPP. This method is not suited to boreal and 

arctic ecosystems due to the large differences between night-time and daytime temperature values. 

Two different light-curve fitting schemes were tested. 

3.2.3.1. Light curve models 

In order to apply this framework to carbon fluxes partitioning, a temperature/light-curve model was 

defined. The NEE was defined as: 

𝑁𝐸𝐸 = 𝑅𝑒𝑐𝑜 − 𝐺𝑃𝑃 Eq.5 

GPP was defined as: 

𝐺𝑃𝑃(𝑡) = 𝐺𝑃𝑃𝑚𝑎𝑥 × Erf (
𝑃𝑃𝐹𝐷(𝑡)×𝑓𝑎𝑃𝐴𝑅𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛

𝑃𝑃𝐹𝐷𝑚𝑎𝑥×
1

𝑒𝑟𝑓𝑖𝑛𝑣(0.95)

) Eq.6 

With Erf(x) the error function, the integral of a Gaussian function between – infinity and x, 𝐺𝑃𝑃𝑚𝑎𝑥 

the maximum GPP (GPP at saturation) and 𝑃𝑃𝐹𝐷𝑚𝑎𝑥 the PPFD value needed to reach 95% of 

GPPmax. The 𝑓𝑎𝑃𝐴𝑅𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛 values used were extracted from the ones computed at tile level in 

3.1. This model has an asymptotic exponential shape, and two scaling parameters: one scaling 

parameter on the GPP axis (GPPmax) and one on the PPFD axis (PPFDmax). The fact that those two 
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parameters operate on the two different axes of the light-curve limit potential error compensation 

between them. The theoretical framework behind this model is detailed in Annex 1. 

For modelling Reco, the following model was used: 

𝑅𝑒𝑐𝑜(𝑡) = 𝑅𝑒𝑐𝑜𝑚𝑎𝑥 × (0.5 + 0.5 × 𝐸𝑟𝑓 (
𝑇𝑎𝑖𝑟(𝑡)−𝑇𝑖𝑛𝑓𝑙

𝑇𝑟𝑎𝑛𝑔𝑒
)) Eq.7 

With Recomax the potential respiration (respiration in ideal temperature conditions), Tair the air 

temperature, Tinfl the temperature at the respiration inflexion point, and Trange the range of 

temperature within which respiration varies. This model has a sigmoid shape and was chosen to limit 

error compensation between Recomax and the other two parameters. The light-curve model was 

fitted on a 15-day moving window, shifting by one day for each fit. For each day, the average and 

standard deviation for each parameter over the 15 overlapping windows was computed. 

The random forest-based partitioning was used as a reference. 3 sites for which the R² between the 

light-curve fit and the random-forest one was lower than 90% were excluded. The light-curve based 

partitioning was then used to generate light-curve parameters at a daily scale for each site. 

3.3. GPP prediction at tile level 

3.3.1. Light-curve parameters prediction at tile level 

A 200 trees random forest was then fitted using the extracted daily average MAIAC reflectance 

values, the day of year and 𝑓𝑎𝑃𝐴𝑅𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛 for the flux tower pixels as independent variables and 

the obtained light curve parameters GPPmax and PPFD max averaged at daily scale and temporally 

matched with the MAIAC observations. The obtained Random Forest model was then applied at tile 

level to derive daily estimations of GPPmax and PPFDmax. 

3.3.2. GPP estimation at tile level 

The GPP was then estimated at tile level and at hourly resolution by injecting the obtained GPPmax, 

PPFDmax, 𝑓𝑎𝑃𝐴𝑅𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛 and ERA-5 Land hourly PPFD estimations. 

3.3.3. Error estimation 

The obtained simulated GPP were extracted for the flux tower pixels and compared to the random 

forest derived partitioned GPP. To avoid circularity due to the same light curve model being used to 

estimate tower-based GPP and to predict the MAIAC-based GPP estimates, a new independent and 

non-parametric estimate of GPP was derived at flux towers using a random-forest variability 

partitioning approach. 

A random forest was fitted onto night-time and daytime NEE using the variables listed in Table 4. 

The ecosystem respiration was then estimated as the predicted NEE for a PPFD value forced through 

zero and U* fixed at its 95% percentile, and ecosystem GPP was estimated as Reco-NEE simulated 

for a U* fixed at its 95% percentile. This non-parametric estimate of GPP was used to validate the 

final tile-level GPP model, and to estimate the error. An independent non-parametric estimate of 

GPP is therefore used instead of GPP estimates derived from the same light-curve model which was 

used for model training and prediction. 

To avoid overestimation of the error due to spatial mismatch between the MODIS MAIAC pixels and 

the flux tower footprints, a set of sites were selected using the MCD12Q1 yearly land cover product. 

A total of 17 sites for which a MODIS MAIAC pixel composed of at least 75% of the same land cover 



 12 

class as the flux tower would be retrieved were selected. The relationship between the daily 

random-forest based GPP and the predicted MAIAC GPP is shown in figure 6 : 

 

Figure 6: comparison between flux tower derived GPP and MAIAC derived GPP at the daily scale. 

The structure of the error was then investigated in order to check for biases and to formulate an error 

model. 

No independent significant trend in RMSE could be found according to IGBP classes, years nor months. 

The relationship between the predicted GPP and the prediction RMSE is shown in figure 7. 

 

Figure 7: relationship between the predicted GPP and the model root-mean-square deviation. 


