AVHRR Fire Product User's Guide

Tatiana V. Loboda Joanne V. Hall Varada Shevade

Department of Geographical Sciences University of Maryland

Version 1.0

29th August 2017

Contents

1.0	Introduction	. 3
2.0	Product Description	. 3
3.0	AVHRR Fire Products	. 3
3.1	Burned Area	. 3
3.2	Hotspots	. 4
4.0	Product Assessment	. 4
5.0	Caveats and Known Problems	11
6.0	References	11

Abbreviations and Acronyms

AICC – Alaskan Interagency Coordination Center AVHRR - Advanced Very High Resolution Radiometer NDVI – Normalized Difference Vegetation Index NOAA – National Oceanic and Atmospheric Administration NRC – Natural Resources Canada

1.0 Introduction

This user guide provides information on the AVHRR Burned Area and Hotspot products. It is intended to provide the end user with detailed information, including caveats and known problems.

2.0 **Product Description**

The 12-year (1989 – 2000) AVHRR burned area and hotspot products were developed by Pu et al. (2007). The fire products were generated over the fire season (1^{st} May – 31^{st} October) for all years except 1994 when the period analyzed was between 1^{st} May and 13^{th} September. These products were developed using data acquired from two NOAA polar-orbiting satellites (NOAA-11 and NOAA-14) at 1-km resolution. Pu et al., (2007) developed a burned area algorithm using the Hotspot and NDVI Differencing Synergy (HANDS) mapping method (see Fraser et al., 2000 for more details). The algorithm incorporates pre- and post-burn hotspot detections and NDVI fluctuations to confirm the presence of a fire. Regional NDVI thresholds are applied to create burned scar patches. Any burn patches containing less than 5% of the confirmed hotspots are removed – this avoids any erroneous NDVI decreases caused by other factors including cloud cover, harvesting etc.

3.0 AVHRR Fire Products

The products are available as annual shapefiles (.shp):

- AVHRR burned area in hectares (*Area_ha*) and acres (*Area_ac*)
- AVHRR hotspots (*YYYYMMDD* date mapped)

3.1 Burned Area

- Date Range: 1989 2000
- Projection: Canada Albers Equal Area
- Naming Convention: YYYY_avhrr_ba.shp

Where:

YYYY = year mapped

3.2 Hotspots

- Date Range: 1989 2000
- Projection: Canada Albers Equal Area
- Naming Convention: YYYY_ avhrr_hs.shp

Where:

YYYY = year mapped

4.0 Product Assessment

An intercomparison of burned area (km^2) between the AVHRR burned area product and fire perimeter data obtained from the Alaskan Interagency Coordination Center (AICC; https://fire.ak.blm.gov/) and the Natural Resources Canada (NRC; https://www.nrcan.gc.ca/) was carried out to assess the performance of the AVHRR burned area algorithm. Yearly comparisons were undertaken between 1989 and 2000 (Figures 1a - 11).

Figure 1a: 1989 burned area (km²) comparison between the fire perimeters from AICC and NRC and the AVHRR burned area product. The AVHRR product mapped an additional 5854 km² of cumulative burned area. These values were excluded from the analysis.

Figure 1b: 1990 burned area (km²) comparison between the fire perimeters from AICC and NRC and the AVHRR burned area product. The AVHRR product mapped an additional 1317 km² of cumulative burned area. These values were excluded from the analysis.

Figure 1c: 1991 burned area (km²) comparison between the fire perimeters from AICC and NRC and the AVHRR burned area product. The AVHRR product mapped an additional 3297 km² of cumulative burned area. These values were excluded from the analysis.

Figure 1d: 1992 burned area (km²) comparison between the fire perimeters from AICC and NRC and the AVHRR burned area product. The AVHRR product mapped an additional 522 km² of cumulative burned area. These values were excluded from the analysis.

Figure 1e: 1993 burned area (km²) comparison between the fire perimeters from AICC and NRC and the AVHRR burned area product. The AVHRR product mapped an additional 763 km² of cumulative burned area. These values were excluded from the analysis.

Figure 1f: 1994 burned area (km²) comparison between the fire perimeters from AICC and NRC and the AVHRR burned area product. The AVHRR product mapped an additional 1038 km² of cumulative burned area. These values were excluded from the analysis.

Figure 1g: 1995 burned area (km²) comparison between the fire perimeters from AICC and NRC and the AVHRR burned area product. The AVHRR product mapped an additional 4241 km² of cumulative burned area. These values were excluded from the analysis.

Figure 1h: 1996 burned area (km²) comparison between the fire perimeters from AICC and NRC and the AVHRR burned area product. The AVHRR product mapped an additional 3484 km² of cumulative burned area. These values were excluded from the analysis.

Figure 1i: 1997 burned area (km²) comparison between the fire perimeters from AICC and NRC and the AVHRR burned area product. The AVHRR product mapped an additional 7598 km² (includes anomalous striping) of cumulative burned area. These values were excluded from the analysis.

Figure 1j: 1998 burned area (km²) comparison between the fire perimeters from AICC and NRC and the AVHRR burned area product. The AVHRR product mapped an additional 4516 km² of cumulative burned area. These values were excluded from the analysis.

Figure 1k: 1999 burned area (km²) comparison between the fire perimeters from AICC and NRC and the AVHRR burned area product. The AVHRR product mapped an additional 3810 km² of cumulative burned area. These values were excluded from the analysis.

Figure 11: 2000 burned area (km²) comparison between the fire perimeters from AICC and NRC and the AVHRR burned area product. The AVHRR product mapped an additional 1950 km² of cumulative burned area. These values were excluded from the analysis.

Overall, the AVHRR burned area product provides a consistently reasonable estimate of area burned over Alaska and Canada both cumulatively (see Table A for results summary) and per individual burn scar with R^2 exceeding 0.8 in 10 out of 12 years. Although the AVHRR-based estimate of area burned are consistently lower than that reported by the AICC and NRC, the established statistical relationships allow for developing robust adjustment factors.

Table A: Summary of comparison between the AVHRR burned area product (1989 – 2000) and the AICC and NRC fire perimeter datasets. Small fire years (annual cumulative area < 25,000 km² are denoted with *) and large fire years (annual cumulative area $\ge 25,000$ km² are denoted with a $^{\beta}$).

<u>Year</u>	<u>Cumulative Fire</u> <u>Database Area</u> <u>(km²)</u>	<u>Cumulative Fire</u> <u>Database</u> <u>Area (km²):</u> <u>Unmapped by</u> <u>AVHRR</u>	<u>AVHRR</u> <u>R² (slope)</u>
1989 ^β	79921	78280	-0.451 (-0.05)
1990*	21556	3086	0.825 (0.55)
1991*	22672	3258	0.822 (0.57)
1992*	9677	769	0.922 (0.45)
1993*	23597	2666	0.989 (0.74)
1994 ^β	60997	3214	0.879 (0.76)
1995 ^β	68197	2514	0.981 (0.73)
1996*	20562	1248	0.941 (0.78)
1997*	13480	1698	0.828 (0.70)
1998 ^β	44245	2536	0.851 (0.65)
1999*	21302	1893	0.952 (0.76)
2000*	8312	1195	0.576 (0.40)

5.0 Caveats and Known Problems

- 1994 burned area comprises of data from 1st May 13th September.
- 1997 hotspots and burned area contain anomalous stripes over eastern-central Canada leading to an overestimation in burned area.

6.0 References

Fraser, R. H., Li, Z., & Cihlar, J. (2000). Hotspot and NDVI differencing synergy (HANDS): A new technique for burned area mapping over boreal forest. Remote Sensing of Environment, 74(3), 362-376.

Pu, R., Li, Z., Gong, P., Csiszar, I., Fraser, R., Hao, W. M., Kondragunta & Weng, F. (2007). Development and analysis of a 12-year daily 1-km forest fire dataset across North America from NOAA/AVHRR data. Remote sensing of environment, 108(2), 198-208.